Approach To Rotator Cuff Evaluation

The Ultimate Rotator Cuff Training Guide

Rotator Cuff Alternative Medicine

Get Instant Access

One approach to evaluating the rotator cuff on MRI is to begin by reviewing the coronal oblique PD images to get an overview of the anatomy (Fig. 1). Proton density images are weighted intermediately between T1 and T2 signal. They provide superior signal-to-noise ratio and spatial resolution, albeit at the expense of soft tissue contrast. Large cuff tears and distortions of the anatomy may be identified. Shoulder alignment may be evaluated also.

Occasionally because of improper positioning or patient motion the shoulder is imaged in internal rotation. This imaging leads to overlap of the supraspina-tus and infraspinatus tendons on coronal oblique images [5]. The coronal oblique plane usually is the most useful plane for cuff evaluation because it parallels the course of the most commonly torn cuff tendons, the supraspinatus and infraspinatus [6]. The subscapularis often is seen well in the coronal oblique plane but is evaluated best on axial images. The teres minor tendon is seen best in the sagittal oblique plane but rarely is torn.

After a general overview of anatomy is obtained by reviewing the coronal oblique PD images, the T2-weighted images with fat suppression may be evaluated for abnormally increased signal in the tendons or bones (Fig. 2). The coronal and sagittal oblique fast spin echo (FSE) T2 fat-suppressed images are highly sensitive for pathology; however, they are prone to artifactually increased signal and artifact unless the time to echo (TE) is greater than 30 msec. Once a potential abnormality is identified on one of the fat-suppressed sequences the finding should be confirmed on orthogonal images.

Next, the axial images should be reviewed with particular attention to the subscapularis muscle. Finally, review of the sagittal T1 sequence is useful to evaluate for muscle atrophy and mechanical impingement of the rotator cuff by hypertrophic degenerative changes in the coracoacromial arch structures.

Fig. 1. Normal rotator cuff tendon. On PD oblique coronal image, the supraspinatus tendon (arrow) shows uniform thickness and signal intensity. The tendon is intact on the greater tuberosity without muscle atrophy or fatty change. H, humeral head.

Distal Clavicle Bone Marrow Edema

Fig. 2. Severe bone marrow edema in patient with suspected rotator cuff tear. Fat-suppressed T2-weighted oblique coronal image (A) shows high-signal bone marrow edema involving the distal clavicle (arrow) and adjacent acromion. On T1-weighted oblique sagittal image (B), the distal clavicular marrow edema (arrow) is low in signal intensity. The cuff tendon (A) and cuff muscles (B) are normal. G, glenoid; H, humeral head.

Fig. 2. Severe bone marrow edema in patient with suspected rotator cuff tear. Fat-suppressed T2-weighted oblique coronal image (A) shows high-signal bone marrow edema involving the distal clavicle (arrow) and adjacent acromion. On T1-weighted oblique sagittal image (B), the distal clavicular marrow edema (arrow) is low in signal intensity. The cuff tendon (A) and cuff muscles (B) are normal. G, glenoid; H, humeral head.

Was this article helpful?

0 0
31 Days To Bigger Arms

31 Days To Bigger Arms

You can have significantly bigger arms in only 31 days. How much bigger? That depends on a lot of factors. You werent able to select your parents so youre stuck with your genetic potential to build muscles. You may have a good potential or you may be like may of the rest of us who have averages Potential. Download this great free ebook and start learns how to build your muscles up.

Get My Free Ebook


Responses

Post a comment