Because vn, Be, and FL are orthogonal (8 = 90°), FL = q vn By uz forces the moving electrons toward the outer cell membrane, creating a space charge that acts to depolarize the cell. Note that uz is a unit vector with the direction of the Lorentz force, i.e., |uz| = 1. Figure 2.4-1 illustrates schematically this process for the orthogonal case. Note that By is the vector component of Be that by definition is orthogonal to vn in the x-y plane of the membrane. If the cell orientation is such that Be is parallel with vn , 8 = 0°, and there will be zero Lorentz force and no change in the cell resting potential. The Hall-induced electric field across the current-carrying volume of thickness t can be shown to be Ez = vx By V/m in the direction shown. The induced Hall potential is simply VH = t Ez = t vx By = Jx By/(q n). q is the electron charge, and n is the average density of electrons moving in the volume. (Note that if By or vn changes sign, the cell will be hyperpolarized, and will fire at a lower rate or will be inhibited.) In closing, note that the parallel current density need not be carried by electrons; any anion or cation with good mobility (and thus high vx) will do.

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook

Post a comment