References

High Blood Pressure Exercise Program

High Blood Pressure Causes and Treatments

Get Instant Access

1. Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism. Respir. Physiol. 1994; 95: 1-10.

2. Agani FH, Pichiule P, Chavez JC, and LaManna JC. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J. Biol. Chem. 2000; 275: 35863-35867.

3. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, and Hampl V. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 1998; 101:2319-2330.

4. Chance B and Williams GR. Respiratory enzymes in oxidative phosphorylation. J. Biol. Chem. 1955; 217: 383-393.

5. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA. 1998; 95: 5015-5019.

6. Chandel NS, McClintock DS, Feliciano SE, Wood TM, Melendez JA, Rodriguez AM, and Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-la during hypoxia: a mechanism of 02 sensing. J. Biol. Chem. 2000; 275: 25130-25138.

7. Duranteau, J, Chandel NS, Kulisz A, Shao Z, and Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J. Biol. Chem. 1998; 273: 1161911624.

8. Eddahibi S, Raffestin B, Hamon M, and Adnot S. Is the serotonin transporter involved in the pathogenesis of pulmonary hypertension? J. Lab. Clin. Med. 2002; 139: 194-201.

9. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, and Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43-54.

10. Gelband CH and GelbandH. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation. 1997; 96: 3647-3654.

11. Gleadle JM, Ebert BL, and Ratcliffe PJ. Diphenylene iodonium inhibits the induction of erythropoietin and other mammalian genes by hypoxia. Implications for the mechanism of oxygen sensing. Eur. J. Biochem. 1995; 234:92-99.

12. Goldberg MA, Dunning SP, and Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988; 242: 1412-1415.

13. Görlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, and Busse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22p'""-containing NADPH oxidase. Circ. Res. 2001; 89: 47-54.

14. Haddad JJ and Land SC. A non-hypoxic, ROS-sensitive pathway mediates TNF-a-dependent regulation ofHIF-la. FEBS Lett. 2001; 505: 269-274.

15. Hirota K and Semenza GL. Rac1 activity is required for the activation of hypoxia-inducible factor 1. J. Biol. Chem. 2001; 276: 21166-21172.

16. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, and Kaelin WG Jr. HIFa targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science 2001; 292: 464-468.

17. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, and Semenza GL. Cellular and developmental control of 02 homeostasis by hypoxia-inducible factor 1 a. Genes Dev. 1998; 12: 149-162.

18. Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, and Ratcliffe PJ. Targeting of HIF-a to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science 2001; 292: 468-472.

19. Killilea DW, Hester R, Balczon R, Babal P, and Gillespie MN. Free radical production in hypoxic pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 279: L408-412.

20. Leach RM, Hill HM, Snetkov VA, Robertson TP, and Ward JPT. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J. Physiol. 2001; 536: 211-224.

21. MacLean MR. Endothelin-1: a mediator of pulmonary hypertension? Pulm. Pharmacol. Ther. 1998; 11: 125-132.

22. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, and Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271-275.

23. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, and Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ. Res. 2002; 90: 1307-1315.

24. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, and Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the ß-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2000; 2: 423-427.

25. Robertson TP, Hague D, Aaronson PI, and Ward JPT. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J. Physiol. 2000; 525: 669-680.

26. Schroedl C, McClintock DS, Budinger GRS, and Chandel NS. Hypoxic but not anoxic stabilization of HIF-la requires mitochondrial reactive oxygen species. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283: L922-L931.

27. Semenza GL. Regulation of mammalian 02 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol. 1999; 15: 551-578.

28. Shimoda LA, Manalo DJ, Sham JSK, Semenza GL, and Sylvester JT. Partial HIF-la deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L202-L208.

29. Srinivas V, Zhu X, Salceda S, Nakamura R, and Caro J. Hypoxia-inducible factor la (HIF-

la) is a non-heme iron protein. Implications for oxygen sensing. J. Biol. Chem. 1998; 273: 18019-18022.

30. Sylvester JT, Sham JSK, Shimoda LA, and Liu Q. "Cellular mechanisms of acute hypoxic pulmonary vasoconstriction." In Respiratory-Circulatory Interactions in Health and Disease, Scharf SM, Pinsky MR, and Magder S, eds. New York, NY: Marcel Dekker; 2001, pp. 351359.

31. Turrens JF, Alexandre A, and Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 1985; 237:408-414.

32. Vaux EC, Metzen E, Yeates KM, and Ratcliffe PJ. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 2001; 98: 296-302.

33. Wang GL, liang B-H, Rue EA, and Semenza GL. Hypoxia-inducible factor 1 is a basic-helix -loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc. Natl. Acad. Sei. USA. 1995; 92: 5510-5514.

34. Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88: 1259-1266.

35. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ. Res. 2002; 91: 719-726.

36. Williams KJ, Telfer BA, Airley RE, Peters HP, Sheridan MR, van der Kogel AJ, Harris AL, and Stratford IJ. A protective role for HIF-1 in response to redox manipulation and glucose deprivation: implications for tumorigenesis. Oncogene 2002; 21: 282-290.

37. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, and Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor la. J. Clin. Invest. 1999; 103: 691-696.

38. Yuan X-J and Rubin LJ. "Pathology ofpulmonary hypertension." In Respiratory-Circulatory Interactions in Health and Disease, Scharf SM, Pinsky MR, and Magder S, eds. New York, NY: Marcel Dekker; 2001, pp. 447-477.

This page intentionally left blank

Was this article helpful?

0 0
Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook


Post a comment