References

1. Allen K and Haworth SG. Impaired adaptation of intrapulmonary arteries to intrauterine life in the newborn pig exposed to hypoxia: an ultrastructural study. Fed. Proc. 1986; 45:879a.

2. Ambalavanan N, Philips JB, 3rd, Bulger A, Oparil S, and Chen YF. Endothelin-A receptor blockade in porcine pulmonary hypertension. Pediatr. Res. 2002; 52:913-921.

3. Arrigoni FI, Vallance P, Haworth SG, and Leiper JM. Metabolism of asymmetric dimethylarginines is regulated in the lung developmentally and with pulmonary hypertension induced by hypobaric hypoxia. Circulation 2003; 107:1195-1201.

4. Balasubramaniam V, Tang JR, Maxey A, Plopper CG, and Abman SH. Mild hypoxia impairs alveolarization in the endothelial nitric oxide synthase-deficient mouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; 284:L964-971.

5. Belik J, Keeley FW, Baldwin F, and Rabinovitch M. Pulmonary hypertension and vascular remodeling in fetal sheep. Am. J. Physiol. 1994; 266:H2303-H2309.

6. Berkenbosch JW, Baribeau J, and Perrault T. Decreased synthesis and vasodilation to nitric oxide in piglets with hypoxia-induced pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: L276-L283.

7. Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, and Carmeliet P. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J. Clin. Invest. 2003; 111: 1519-1527.

8. Champion HC, Bivalacqua TJ, Toyoda K, Heistad DD, Hyman AL, and Kadowitz PJ. In vivo gene transfer ofprepro-calcitonin gene-related peptide to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse. Circulation 1000; 101:923-930.

9. Chassagne C, Eddahibi S, Adamy C, Rideau D, Marotte F, Dubois-Rande JL, Adnot S, Samuel JL, and Teiger E. Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 2000; 22:323-332.

10. Cohen AH, Hanson K, Morris K, Fouty B, McMurty IF, Clarke W, and Rodman DM. Inhibition of cyclic 3'-5'-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J. Clin. Invest. 1996; 97:172-179,.

11. Das M, Dempsey EC, Bouchey D, Reyland ME, and Stenmark KR. Chronic hypoxia induces exaggerated growth responses in pulmonary artery adventitial fibroblasts: Potential contribution of specific protein kinase c isozymes. Am. J. Respir. Cell Mol. Biol. 2000; 22; 15-25.

12. Davie NJ, Crossno JT, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, and Stenmark KR. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: potential contribution of circulating progenitor cells (R1). Am. J. Physiol. Lung. Cell. Mol. Physiol. 2003 (in press).

13. Davies G and Reid L. Effect of scoliosis on growth of alveoli and pulmonary arteries and on right ventricle. Arch. Dis. Child. 1971; 46:623-632.

14. Dempsey EC, Stenmark KR, McMurtry IF, O'Brien RF, Voelkel NF, and Badesch DB. Insulin-like growth factor I and protein kinase C activation stimulate pulmonary artery smooth muscle cell proliferation through separate but synergistic pathways. J. Cell. Physiol. 1990; 144: 159-165.

15. Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, Simmoneau G, Dartevelle P, Hamon M, and Adnot S. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Invest. 2001; 108: 1141-1150.

16. Garg HG, Thompson BT, and Hales CA. Structural determinants of antiproliferative activity of heparin on pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 279: L779-789.

17. Grover RF, Vogel JH, Voigt GC, and Blount SGJ. Reversal of high altitude pulmonary hypertension. Am. J. Cardiol. 1966; 18: 928-932.

18. Hoshikawa Y, Nana-Sinkam P, Moore MD, Sotto-Santiago S, Phang T, Keith RL, Morris KG, Kondo T, Tuder RM, Voelkel NF, and Geraci MW. Hypoxia induces different genes in the lungs of rats compared with mice. Physiol. Genomics 2003; 12: 209-219.

19. Keegan A, Morecroft I, Smillie D, Hicks MN, and MacLean MR. Contribution of the 5-HTIB receptor to hypoxia-induced pulmonary hypertension: converging evidence using 5-HT1B-receptor knockout mice and the 5-HTIB/ID-receptor antagonist GR 127935. Circ. Res. 2001; 89: 1231-1239.

20. Kobayashi J and Rabinovitch M. Elastin-bound serum factor and endothelial cell factor induce pulmolnary artery smooth muscle cell elastolytic activity. Circulation 1994; 90(4, part II): I-417.

21. Kobayashi J, Wigle D, Childs T, Zhu L, Keeley FW, and Rabinovitch M. Serum-induced vascular smooth muscle cell elastolytic activity through tyrosine kinase intracellular signalling. J. Cell. Physiol. 1994; 160: 121-131.

22. Kouyoumdjian C, Adnot S, Levame M, Eddahibi S, Bousbaa H, and Raffestin B. Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats. J. Clin. Invest. 1994; 94: 578-584.

23. Launay JM, Herve P, Peoc'h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, and Maroteaux L. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat. Med. 2002; 8: 1129-1135.

24. Le Cras TD, Markham NE, Tuder RM, Voelkel NF, and Abman SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am. J. Physiol. Lung Cell. Mol Physiol. 2002; 283: L555-562.

25. Liu JM and Davidson JM. The elastogenic effect of recombinant transforming growth factor-beta on porcine aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 1988; 154:895901.

26. Louzier V, Raffestin B, Leroux A, Branellec D, Caillaud JM, Levame M, Eddahibi S, and Adnot S. Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; 284: L926-937.

27. Madden MC, Vender RL, and Friedman M. Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. Prostaglandins 1986; 31: 1049-1062.

28. Maruyama K, Ye CL, Woo M, Venkatacharya H, Lines LD, Silver MM, and Rabinovitch M. Chronic hypoxic pulmonary hypertension in rats and increased elastolytic activity. Am. J. Physiol. 1991; 261: H1716-1726.

29. McMurtry IF, Frith CH, and Will DH. Cardiopulmonary responses of male and female swine to simulated high altitude. J. Appl. Physiol. 1973; 35: 459-462.

30. Meyrick B and Reid L. Endothelial and subintimal changes in rat hilar pulmonary artery during recovery from hypoxia. Lab. Invest. 1980; 42: 603-615.

31. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, and Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 8798-8803.

32. Mitani Y, Zaidi SHE, Dufourcq P, Thompson K, and Rabinovitch M. Nitric oxide reduces vascular smooth muscle cell elastase activity through cGMP-mediated suppression of ERK phosphorylation and AML1B nuclear partitioning. FASEB J. 2000; 14: 805-814.

33. Morrell NW, Morris KG, and Stenmark KR. Role of angiotensin converting enzyme and angiotensin II in the development of hypoxic pulmonary hypertension. Am. J. Physiol. 1995; 269: H1186-H1194.

34. Poiani GJ, Tozzi CA, Choe JK, Yohn SE, and Riley DJ. An antifibrotic agent reduces blood pressure in established pulmonary hypertension in the rat. J. Appl. Physiol. 1990; 68: 15421546.

35. Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, and Archer SL. In vivo gene transfer of the 02-sensitive potassium channel Kv1 .5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 2003; 107: 2037-2044.

36. Prosser IW, Stenmark KR, Suthar M, Crouch EC, Mecham RP, and Parks WC. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am. J. Pathol. 1989; 135: 1073-1088.

37. Quinn DA, Dahlberg CG, Bonventre JP, Scheid CR, Honeyman T, Joseph PM, Thompson BT, and Hales CA. The role of Na+/H+exchange and growth factors in pulmonary artery smooth muscle cell proliferation. Am. J. Respir. Cell Mol. Biol. 1996; 14: 139-145.

38. Rabinovitch M, Boudreau N, Vella G, Coceani F, and Olley PM. Oxygen-related prostaglandin synthesis in ductus arteriosus and other vascular cells. Pediatr. Res. 1989; 26: 330-335.

39. Rabinovitch M, Gamble WJ, Miettinen OS, and Reid L. Age and sex influence on pulmonary hypertension of chronic hypoxia on recovery. Am. J. Physiol. 1981; 240: H62-H72.

40. Rabinovitch M, Mullen M, Rosenberg H, Maruyama K, O'Brodovich H, and Olley P. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rats. Am. J. Physiol. 1988; 254: H500-H508.

41. Ryland D and Reid L. The pulmonary circulation in cystic fibrosis. Thorax 1975; 30: 285-308.

42. Sato K, Rodman DM, and McMurtry IF. Hypoxia inhibits increased ETB receptor-mediated NO synthesis in hypertensive rat lungs. Am. J. Physiol. 1999; 276: L571-581.

43. Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, Wilson H, and Reeves JT. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J. Appl. Physiol. 1987; 62: 821-830.

44. Taraseviciene-Stewart L, Gera L, Hirth P, Voelkel NF, Tuder RM, and Stewart JM. A bradykinin antagonist and a caspase inhibitor prevent severe pulmonary hypertension in a rat model. Can. J. Physiol. Pharmacol. 2002; 80: 269-274.

45. Thompson BT, Spence CR, Janssens SP, Joseph PM, and Hales CA. Inhibition of hypoxic pulmonary hypertension by heparins of differing in vitro antiproliferative potency. Am. J. Respir. Crit. Care. Med. 1994; 149: 1512-1517.

46. Thompson K, Kobayashi J, Childs T, Wigle D, and Rabinovitch M. Endothelial and serum factors which include apolipoprotein A1 tether elastin to smooth muscle cells inducing serine elastase activity via tyrosine kinase-mediated transcription and translation. J. Cell Physiol. 1998; 174: 78-89.

47. Thompson K and Rabinovitch M. Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular-matrix bound basic fibroblast growth factor. J. Cell Physiol. 1996; 166: 495-505.

48. Tozzi CA, Wilson FJ, Yu SY, and Riley DJ. Vascular connective tissue is rapidly degraded during early regression of pulmonary hypertension. Chest 1991; 99: 41S-42S.

49. Tucker A, McMurtry IF, Reeves JT, Alexander AF, Will DH, and Grover RF. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am. J. Physiol. 1975; 228: 762-767.

50. Vieillard-Baron A, Frisdal E, Eddahibi S, Deprez I, Baker AH, Newby AC, Berger P, Levame M, Raffestin B, Adnot S, and d'Ortho MP. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer or doxycycline aggravates pulmonary hypertension in rats. Circ. Res. 2000; 87: 418-425.

51. Voelkel NF, Tuder RM, Wade K, Hoper M, Lepley RA, Goulet JL, Koller BH, and Fitzpatrick F. Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J. Clin. Invest. 1996; 97: 2491-2498.

52. Wanstall JC, Gambino A, Jeffery TK, Cahill MM, Bellomo D, Hayward NK, and Kay GF. Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovasc. Res. 2002; 55: 361-368.

53. Wigle DA, Thompson KE, Yablonsky S, Zaidi SHE, Coulber C, Jones PL, and Rabinovitch M. AML1-like transcription factor induces serine elastase activity in ovine pulmonary artery smooth muscle cells. Circ. Res. 1998; 83(3):252-263.

54. Yet SF, Perrella MA, Layne MD, Hsieh CM, Maemura K, Kobzik L, Wiesel P, Christou H, Kourembanas S, and Lee ME. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J. Clin. Invest. 1999; 103: R23-R29.

55. Yu A, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, and Sylvester JT. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor-1-alpha. J. Clin. Invest. 1999; 103: 691-696.

56. Zaidi SHE, You X-M, Ciura S, Husain M, and Rabinovitch M. Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 2002; 105 : 516-521.

57. Zhao L, Mason NA, Strange JW, Walker H, and Wilkins MR. Beneficial effects of phosphodiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic Peptide activity. Circulation 2003; 107: 234-237.

Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook


Post a comment