1 Böhm, H.-J.; Schneider, G.: Protein-Ligand Interactions From Molecular Recognition to Drug Design, Wiley-VCH, Weinheim, 2003, 242 pp.

2 Klebe, G.; Böhm, M.; Dullweber, F.; Gradler, U.; Gohlke, H.; Hendlich, M.: Structural and energetic aspects of protein-ligand binding in drug design, in Molecular Modeling and Prediction of Bioactivity (Proceedings of the European Symposium on Quantitative Structure-Activity Relationships), Copenhagen, 1998, 103-110.

3 Jackson, R.C.: Update on computer-aided drug design. Curr. Opin. Biotechnol. 1995, 6, 646-651.

4 Geoghegan, K.F.; Kelly, M.A.: Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Mass Spectrom. Rev. 2005, 24, 347-366.

5 Gohlke, H.; Klebe, G.: Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. 2002, 41, 2644-2676.

6 Baker, B.M.; Murphy, K.P.: Prediction of binding energetics from structure using empirical parameterization. Methods Enzymol. 1998, 295, 294315.

7 Raffa, R.B.: Experimental approaches to determine the thermodynamics of protein-ligand interactions, in: Methods and Principles in Medicinal Chemistry vol. 19 (Protein-Ligand Interactions), ed. Bohm, H.-J.; Schneider, G., Wiley-VCH, Weinheim, 2003, 51-71.

8 Wintor, D.J.; Sawyer, W.H.: Quantitative Characterization of Ligand Binding. John Wiley & Sons, New York, 1995, 176 pp.

9 Sebille, B.: Methods of drug protein binding determinations. Fund. Clin. Pharmacol. 1990, 4[Suppl. 2], 151s-161s.

10 Cantor, C.R.; Schimmel, P.R.: Techniques for the study of biological structure and function, in Biophysical Chemistry, Part 2, W. H. Freeman, San Francisco, 1980, 344-846.

11 Yates, J.R. III: Mass spectrometry and the age of the proteome. J. Mass Spectrom. 1998, 33, 1-19.

12 Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 1997, 16, 1-23.

13 Kaltashov, I.A.; Eyles, S.J.: Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev. 2002, 21, 37-71.

14 Engen, J.R.; Smith, D.L.: Investigating protein structure and dynamics by hydrogen exchange MS. Anal. Chem. 2001, 73, 256A-265A.

15 Schermann, S.M.; Simmons, D.A.; Konermann, L.: Mass spectrometry-based approaches to protein ligand interactions. Expert Rev. Proteomics 2005, 2, 475-485.

16 Breuker, K.: New mass spectrometric methods for the quantification of protein-ligand binding in solution. Angew. Chem. Int. Ed. 2004, 43, 22-25.

17 Johnson, B.M.; Nikolic, D.; van Breemen, R.B.: Applications of pulsed ultrafiltration-mass spectrometry. Mass Spectrom. Rev. 2002, 21, 76-86.

18 Clark, S.M.; Konermann, L.: Screening for noncovalent ligand-receptor interactions by electrospray ionization mass spectrometry-based diffusion measurements. Anal. Chem. 2004, 76, 7077-7083.

19 Slon-Usakiewicz, J.J.; Ng, W.; Dai, J.-R.; Pasternak, A.; Redden, P.R.: Frontal affinity chromatography with MS detection (FAC-MS) in drug discovery. Drug Discov. Today 2005, 10, 409-416.

20 Powell, K.D.; Ghaemmaghami, S.; Wang, M.Z.; Ma, L.; Oas, T.G.; Fitzgerald, M.C.: A general mass spectrometry-based assay for the quantitation of protein-ligand binding interactions in solution. J. Am. Chem. Soc. 2002, 124, 10256-10257.

21 Muckenschnabel, I.; Falchetto, R.; Mayr, L.M.; Filipuzzi, I.: SpeedScreen: label-free liquid chromatography-mass spectrometry-based high-throughput screening for the discovery of orphan protein ligands. Anal. Biochem. 2004, 324, 241-249.

22 Zhu, M.M.; Rempel, D.L.; Du, Z.; Gross, M.L.: Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J. Am. Chem. Soc. 2003, 125, 5252-5253.

23 Zhu, M.M.; Chitta, R.; Gross, M.L.: PLIMSTEX: a novel mass spectrometric method for the quantification of protein-ligand interactions in solution. Int. J. Mass Spectrom. 2005, 240, 213-220.

24 Zhu, M.M.; Rempel, D.L.; Gross, M.L.: Modeling data from titration, amide H/D exchange and mass spectrometry to obtain protein-ligand binding constants. J. Am. Soc. Mass Spectrom. 2004, 15, 388-397.

25 Zhu, M.M.; Rempel, D.L.; Zhao, J.; Giblin, D.E.; Gross, M.L.: Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 2003, 42, 15388-15397.

26 Zhu, M.M.: (2004) Determination of Protein-Ligand Interactions Using H/D Exchange and Mass Spectrometry, PhD dissertation, Washington University, St. Louis, 2004, 338 pp.

27 Guan, J.-Q.; Takamoto, K.; Almo, S.C.; Reisler, E.; Chance, M.R.: Structure and dynamics of the actin filament. Biochemistry 2005, 44, 3166-3175.

28 Takamoto, K.; Das, R.; He, Q.; Doniach, S.; Brenowitz, M.; Herschlag, D.; Chance, M.R.: Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations. J. Mol. Biol.

2004, 343, 1195-1206.

29 Liu, R.; Guan, J.-Q.; Zak, O.; Aisen, P.; Chance, M.R.: Structural reorganization of the transferrin C-lobe and transferrin receptor upon complex formation: the C-lobe binds to the receptor helical domain. Biochemistry 2003, 42, 12447-12454.

30 Hambly, D.M.; Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom.

2005, 16, 2057-2063.

31 Eliezer, D.; Wright, P.E.: Is apomyoglobin a molten globule? Structural characterization by NMR. J. Mol. Biol. 1996, 263, 531-538.

32 Bates, D.M.; Watts, D.G.: Nonlinear Regression Analysis and its Applications, Wiley, New York, 1988.

33 Raghu, K. Chitta, R.K.; Rempel, D.L.; Grayson, M.A.; Remsen, E.E.; Gross, M.L.: Application of SIMSTEX to oligomerization of insulin analogs and mutants, J. Am. Soc. Mass Spectrom. 2006, 17, 1526-1534.

34 Wittinghofer, A.; Pai, E.F.: The structure of Ras protein: a model for a universal molecular switch. Trends Biochem. Sci. 1991, 16, 382-387.

35 Sprang, S.R.; Esch, C.D.: Invasion of the nucleotide snatchers: structural insights into the mechanism of G protein GEFs. Cell 1998, 95, 155-158.

36 Zhang, B.; Zhang, Y.; Wang, Z.; Zheng, Y.: The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem. 2000, 275, 25299-25307.

37 Pai, E.F.; Kabsch, W.; Krengel, U.; Holmes, K.C.; John, J.; Wittinghofer,

A.: Structure of the guanine-nucleotide-binding domain of the Haras oncogene product p21 in the triphosphate conformation. Nature 1989, 341, 209-214.

38 de Vos, A.M.; Tong, L.; Milburn, M.V.; Matias, P.M.; Jancarik, J.; Noguchi, S.; Nishimura, S.; Miura, K.; Ohtsuka, E.; Kim, S.H.: Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 1988, 239, 888-893.

39 John, J.; Schlichting, I.; Schiltz, E.; Rosch, P.; Wittinghofer, A.: C-terminal truncation of p21H preserves crucial kinetic and structural properties. J. Biol. Chem. 1989, 264, 13086-13092.

40 Du, Z.; Zhu, M.M.; Rempel, D.; Vidavsky, I.; Gross, L.M.; Pramanik,

B.: The binding of Mg (II) to ras-GDP as determined by H/D exchange and HPLC/MS, in Proceedings of 49th ASMS Conference on Mass Spectrometry and Allied Topics, Chicago, 2002.

41 Zhang, J.; Matthews, C.R.: Ligand binding is the principal determinant of stability for the p21H-ras protein. Biochemistry 1998, 37, 14881-14890.

42 Pramanik, B.N.; Bartner, P.L.; Mirza, U.A.; Liu, Y.H.; Ganguly, A.K.: Electrospray ionization mass spectrometry for the study of non-

covalent complexes: an emerging technology. J. Mass Spectrom. 1998, 33, 911-920.

43 Patton, C. Webmaxc Standard, available at: ~cpatton/webmaxcS.htm, 2003.

44 Patton, C.; Thompson, S.; Epel, D.: Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 2004, 35, 427-431.

45 Weinstein, H.; Mehler, E.: Ca2+-binding and structural dynamics in the function of calmodulin. Annu. Rev. Physiol. 1994, 56, 213-236.

46 Klee, C.B.: Calmodulin, in Molecular Aspects of Cellular Regulation, Vol. 5: Calmodulin, ed. Cohen, P.; Klee, C.B., Elsevier, Amsterdam, 1988, 371 pp.

47 Linse, S.; Helmersson, A.; Forsen, S.: Calcium binding to calmodulin and its globular domains. J. Biol. Chem. 1991, 266, 8050-8054.

48 Haiech, J.; Klee, C.B.; Demaille, J.G.; Haiech, J.: Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Theoretical approach to study of multiple ligand binding to a macromolecule. Biochemistry 1981, 20, 3890-3897.

49 Banaszak, L.; Winter, N.; Xu, Z.; Bernlohr, D.A.; Cowan, S.; Jones, T.A.: Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv. Protein Chem. 1994, 45, 89-151.

50 Cistola, D.P.; Kim, K.; Rogl, H.; Frieden, C.: Fatty acid interactions with a helix-less variant of intestinal fatty acid-binding protein. Biochemistry 1996, 35, 7559-7565.

51 Kurian, E.; Kirk, W.R.; Prendergast, F.G.: Affinity of fatty acid for rRat intestinal fatty acid binding protein: further examination. Biochemistry 1996, 35, 3865-3874.

52 Ogbay, B.: Determinants of Stability and Stoichiometry in Intestinal Fatty Acid Binding Protein, PhD Dissertation, Washington University, St. Louis, 2003, 197 pp.

53 Zhu, M.M.; Rempel, D.L.; Vidavsky, I.; Gross, M.L.: Ligand binding to IFABP and D34A mutant revealed by H/D exchange, online pepsin digestion, and LC/MS, in Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, 2004.

54 Zhu, M.; Rempel, D.; Du, Z.; Gross Michael, L.; Ogbay, B.; Cistola, D.P.: The influence of mutation on protein folding and ligand binding of IFABP as monitored by H/D exchange and HPLC/MS, in Proceedings of 51st Annual Conference on Mass Spectrome-try and Allied Topics, Montreal, 2003.

55 Malencik, D.A.; Anderson, S.R.: Binding of hormones and neuropeptides by calmodulin. Biochemistry 1983, 22, 1995-2001.

56 Anderson, S.R.; Malencik, D.A.: Peptides recognizing calmodulin. Calcium Cell Funct. 1986, 6, 1-42.

57 Osawa, M.; Swindells, M.B.; Tanikawa, J.; Tanaka, T.; Mase, T.; Furuya, T.; Ikura, M.: Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J. Mol. Biol. 1998, 276, 165-176.

58 Comte, M.; Maulet, Y.; Cox, J.A.: Ca2+-dependent high-affinity complex formation between calmodulin and melittin. Biochem. J. 1983, 209, 269-272.

59 Yao, Y.; Squier, T.C.: Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins. Biochemistry 1996, 35, 6815-6827.

60 Terwilliger, T.C.; Weissman, L.; Eisenberg, D.: The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys. J. 1982, 37, 353-361.

61 Maulet, Y.; Cox, J.A.: Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry 1983, 22, 5680-5686.

62 Cox, J.A.: Interactive properties of calmodulin. Biochem. J. 1988, 249, 621-629.

63 Mamar-Bachi, A.; Cox, J.A.: Quantitative analysis of the free energy coupling in the system calmodulin, calcium, smooth muscle myosin light chain kinase. Cell Calcium 1987, 8, 473-482.

D.C.; Storm, D.R.: Determination of the free-energy coupling for binding of calcium ion and troponin I to calmodulin. Biochemistry 1982, 21, 156-162.

65 Scaloni, A.; Miraglia, N.; Orru, S.; Amodeo, P.; Motta, A.; Marino, G.; Pucci, P.: Topology of the calmodulin-melittin complex. J. Mol. Biol. 1998, 277, 945-958.

66 Scott, J.D.; Pawson, T.: Cell communication: the inside story. Sci. Am. 2000, 282, 72-79.

67 Staub, O.; Dho, S.; Henry, P.C.; Correa, J.; Ishikawa, T.; McGlade, J.; Rotin, D.: WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 1996, 15, 2371-2380.

68 Sidhu, S.S.; Fairbrother, W.J.; Deshayes, K.: Exploring proteinprotein interactions with phage display. ChemBioChem 2003, 4, 14-25.

E.J.; Dodson, G.G.; Vijayan, M.; Baker, E.N.; Harding, M.M.; Hodgkin, D.C.; Rimmer, B.; Sheats, S.: Structure of rhombohedral 2 zinc insulin crystals. Nature 1969, 224, 491-495.

70 Brange, J.; Whittingham, J.; Edwards, D.; You-Shang, Z.; Wollmer, A.; Brandenburg, D.; Dodson, G.; Finch, J.: Insulin structure and diabetes treatment. Curr. Sci. 1997, 72, 470-476.

71 Brange, J.; Volund, A.: Insulin analogs with improved pharmacokinetic profiles. Adv. Drug Deliv. Rev. 1999, 35, 307-335.

72 Pocker, Y.; Biswas, S.B.: Self-association of insulin and the role of hydrophobic bonding: a thermodynamic model of insulin dimerization. Biochemistry 1981, 20, 4354-4361.

73 Powell, K.D.; Fitzgerald, M.C.: Measurements of protein stability by H/D exchange and matrix-assisted laser desorption/ionization mass spectrometry using picomoles of material. Anal. Chem. 2001, 73, 3300-3304.

74 Powell, K.D.; Wales, T.E.; Fitzgerald, M.C.: Thermodynamic stability measurements on multimeric proteins using a new H/D exchange-and matrix-assisted laser desorption/ ionization (MALDI) mass spectrometry-based method. Protein Sci. 2002, 11, 841-851.

75 Ferguson, P.L.; Smith, R.D.: Proteome analysis by mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 399-424.

76 Loo, J.A.: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 2000, 200, 175-186.

77 Hillenkamp, F.: Matrix-assisted laser desorption/ionization of non-covalent complexes. NATO ASI Ser. C: Math. Phys. Sci. 1998, 510, 181-191.

78 Sannes-Lowery, K.A.; Griffey, R.H.; Hofstadler, S.A.: Measuring dissociation constants of RNA and aminoglycoside antibiotics by electrospray ionization mass spectrometry. Anal. Biochem. 2000, 280, 264-271.

79 Rosu, F.; Gabelica, V.; Houssier, C.; De Pauw, E.: Determination of binding constants of oligonucleotide complexes with minor groove binders by electrospray ionization mass spectrometry. Comparison with fluorescence titration data. Adv. Mass Spectrom. 2001, 15, 795-796.

80 Zhang, S.; Van Pelt, C.K.; Wilson, D.B.: Quantitative determination of noncovalent binding interactions using automated nanoelectrospray mass spectrometry. Anal. Chem. 2003, 75, 3010-3018.

81 Bligh, S.W.A.; Haley, T.; Lowe, P.N.: Measurement of dissociation constants of inhibitors binding to Src SH2 domain protein by non-covalent electrospray ionization mass spectrometry. J. Mol. Recognit. 2003, 16, 139-147.

82 Loo, J.A.; Hu, P.; McConnell, P.; Mueller, W.T.: A study of Src SH2 domain protein-phosphopeptide binding interactions by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 234-243.

83 Lim, H.-K.; Hsieh, Y.L.; Ganem, B.; Henion, J.: Recognition of cell-wall peptide ligands by vancomycin group antibiotics: studies using ion spray mass spectrometry. J. Mass Spectrom.

84 Greig, M.J.; Gaus, H.; Cummins, L.L.; Sasmor, H.; Griffey, R.H.: Measurement of macromolecular binding using electrospray mass spectrometry. Determination of dissociation constants for oligonucleotide: serum albumin complexes. J. Am. Chem. Soc. 1995, 117, 10765-10766.

85 Sojo, L.E.; Lum, G.; Chee, P.: Internal standard signal suppression by co-eluting analyte in isotope dilution LC-ESI-MS. Analyst 2003, 128, 51-54.

86 Liang, H.R.; Foltz, R.L.; Meng, M.; Bennett, P.: Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2815-2821.

87 Robinson, C.V.; Chung, E.W.; Kragelund, B.B.; J., K.; Aplin, R.T.; Poulsen, F.M.; Dobson, C.M.: Probing the nature of non-covalent interactions by mass spectrometry: a study of protein-CoA ligand binding and assembly. J. Am. Chem. Soc.

1996, 118, 8646-8653.

88 Wu, Q.; Gao, J.; Joseph-McCarthy, D.; Sigal, G.B.; Bruce, J.E.; Whitesides, G.M.; Smith, R.D.: Carbonic anhydrase-inhibitor binding: from solution to the gas phase. J. Am. Chem. Soc. 1997, 119, 1157-1158.

89 Tjernberg, A.; Carno, S.; Oliv, F.; Benkestock, K.; Edlund, P.-O.; Griffiths, W.J.; Hallen, D.:

Determination of dissociation constants for protein-ligand complexes by electrospray ionization mass spectrometry. Anal. Chem. 2004, 76, 4325-4331.

90 Tang, L.; Kebarle, P.: Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal. Chem. 1993, 65, 3654-3668.

91 Zook, D.R.; Bruins, A.P.: On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry. Int. J. Mass Spectrom. 1997, 162, 129-147.

92 Ikonomou, M.G.; Blades, A.T.; Kebarle, P.: Investigations of the electrospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 1990, 62, 957-967.

93 Cech, N.B.; Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 2002, 20, 362-387.

94 Bruins, A.P.: ESI source design and dynamic range considerations. Electrospray Ionization Mass Spectrom. 1997, 107-136.

95 Zampronio, C.G.; Giannakopulos, A.E.; Zeller, M.; Bitziou, E.; Macpherson, J.V.; Derrick, P.J.: Production and properties of nanoelectrospray emitters used in fourier transform ion cyclotron resonance mass spectrometry: implications for determination of association constants for noncovalent complexes. Anal. Chem. 2004, 76, 5172-5179.

96 Shea, M.A.; Sorensen, B.R.; Pedigo, S.; Verhoeven, A.S.: Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin. Methods Enzymol. 2000, 323, 254-301.

97 Ma, L.; Fitzgerald, M.C.: A new H/D exchange- and mass spectrometry-based method for thermodynamic analysis of protein-DNA interactions. Chem. Biol. 2003, 10, 1205-1213.

98 McLaughlin, S.H.; Jackson, S.E.: Folding and stability of the ligand-binding domain of the glucocorticoid receptor. Protein Sci. 2002, 11, 1926-1936.

99 van Mierlo, C.P.M.; Steensma, E.: Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: the flavodoxin story.

100 Greenfield, N.J.: Circular dichroism analysis for protein-protein interactions. Methods Mol. Biol. 2004, 261, 55-78.

101 Powell, K.D.; Fitzgerald, M.C.: Accuracy and precision of a new H/D exchange- and mass spectrometry-based technique for measuring the thermodynamic properties of protein-peptide complexes. Biochemistry 2003, 42, 4962-4970.

102 Zhang, Z.; Smith, D.L.: Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993, 2, 522-531.

103 Smith, D.L.; Dharmasiri, K.: Protein-ligand binding studied by amide hydrogen exchange and mass spectrometry. NATO ASI Ser. C 1998, 510, 45-58.

104 Engen, J.R.; Gmeiner, W.H.; Smithgall, T.E.; Smith, D.L.: Hydrogen exchange shows peptide binding stabilizes motions in Hck SH2. Biochemistry 1999, 38, 8926-8935.

105 Wang, F.; Li, W.; Emmett, M.R.; Marshall, A.G.; Corson, D.; Sykes, B.D.: Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C. J. Am. Soc. Mass Spectrom. 1999, 10, 703-710.

106 Woods, V.L. Jr.; Hamuro, Y.: High resolution, high-throughput amide deuterium exchange-mass spectrometry (DXMS) determination of protein binding site structure and dynamics: utility in pharmaceutical design. Biochemistry 2001, 2001[Suppl. 37], 89-98.

107 Hamuro, Y.; Wong, L.; Shaffer, J.; Kim, J.S.; Stranz, D.D.; Jennings, P.A.; Woods, V.L. Jr.; Adams, J.A.: Phosphorylation driven motions in the COOH-terminal Src kinase, Csk, revealed through enhanced hydrogen-deuterium exchange and mass spectrometry (DXMS). J. Mol. Biol. 2002, 323, 871-881.

108 Wang, L.; Pan, H.; Smith, D.L.: Hydrogen exchange-mass spectrometry. Optimization of digestion conditions. Mol. Cell. Proteomics 2002, 1, 132-138.

109 Hawkins, C.L.; Davies, M.J.: Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta 2001, 1504, 196-219.

110 Ma, B.; Elkayam, T.; Wolfson, H.; Nussinov, R.: Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl Acad. Sci. USA 2003, 100, 5772-5777.

111 Bogan, A.A.; Thorn, K.S.: Anatomy of hot spots in protein interfaces. J. Mol. Biol. 1998, 280, 1-9.

112 Xu, G.; Chance, M.R.: Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal. Chem. 2005, 77, 4549-4555.

113 M.J. Davies, R.T.D.: Radical-Mediated Protein Oxidation: from Chemistry to Medicine, Oxford University Press, Oxford, 1998, 456 pp.

114 Shcherbakova, I.; Gupta, S.; Chance, M.R.; Brenowitz, M.: Monovalent ionmediated folding of the Tetrahymena thermophila ribozyme. J. Mol. Biol. 2004, 342, 1431-1442.

115 Dhavan, G.M.; Chance, M.R.; Brenowitz, M.: Kinetics analysis of DNA-protein interactions by time-resolved synchrotron X-ray footprinting. Kinet. Anal. Macromol. 2003, 75-86.

116 Kiselar, J.G.; Janmey, P.A.; Almo, S.C.; Chance, M.R.: Visualizing the Ca2+-dependent activation of gelsolin by using synchrotron footprinting. Proc. Natl Acad. Sci. USA 2003, 100, 3942-3947.

117 Fenton, J.H.; Jackson, H.: The oxidation of polyhydric alcohols in presence of iron. J. Chem. Soc. Trans. 1899, 75, 1.

118 Guan, J.-Q.; Almo, S.C.; Chance, M.R.: Synchrotron radiolysis and mass spectrometry: a new approach to research on the actin cytoskeleton. Acc. Chem. Res. 2004, 37, 221-229.

119 Urey, H.C.; Dawsey, L.H.; Rice, F.O.: Absorption spectrum and decomposition of hydrogen peroxide by light. J. Am. Chem. Soc. 1929, 51, 1371-1383.

120 Schiffman, A.; Nelson, D.D. Jr.; Nesbitt, D.J.: Quantum yields for hydroxyl production from 193 and 248 nm photolysis of nitric acid and hydrogen peroxide. J. Chem. Phys. 1993, 98, 6935-6946.

121 Sharp, J.S.; Becker, J.M.; Hettich, R.L.: Protein surface mapping by chemical oxidation: structural analysis by mass spectrometry. Anal. Biochem. 2003, 313, 216-225.

122 Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.O-) in aqueous solution.

123 Vu, D.M.; Myers, J.K.; Oas, T.G.; Dyer, R.B.: Probing the folding and unfolding dynamics of secondary and tertiary structures in a three-helix bundle protein. Biochemistry 2004, 43, 3582-3589.

124 Gilmanshin, R.; Williams, S.; Callender, R.H.; Woodruff, W.H.; Dyer, R.B.: Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl Acad. Sci. USA 1997, 94, 37093713.

125 Gulotta, M.; Gilmanshin, R.; Buscher, T.C.; Callender, R.H.; Dyer, R.B.: Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape. Biochemistry 2001, 40, 5137-5143.

126 Maleknia, S.D.; Wong, J.W.H.; Downard, K.M.: Photochemical and electrophysical production of radicals on millisecond timescales to probe the structure, dynamics and interactions of proteins. Photochem. Photobiol. Sci. 2004, 3, 741-748.

127 Evans, S.V.; Brayer, G.D.: Highresolution study of the three-dimensional structure of horse heart metmyoglobin. J. Mol. Biol. 1990, 213, 885-897.

128 Nishimura, C.; Dyson, H.J.; Wright, P.E.: Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.

129 Nishimura, C.; Lietzow, M.A.; Dyson, H.J.; Wright, P.E.: Sequence determinants of a protein folding pathway. J. Mol. Biol. 2005, 351, 383-392.

130 Dyson, H.J.; Wright, P.E.: Unfolded proteins and protein folding studied by NMR. Chem. Rev. 2004, 104, 3607-3622.

131 Fraczkiewicz, R.; Braun, W.: Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules.

132 Chance, M.R.; Sclavi, B.; Woodson, S.A.; Brenowitz, M.: Examining the conformational dynamics of macromolecules with time-resolved synchrotron X-ray 'footprinting'. Structure 1997, 5, 865-869.

133 Lam, K.S.; Renil, M.: From combinatorial chemistry to chemical microarray. Curr. Opin. Chem. Biol.

134 Metz, G.; Ottleben, H.; Vetter, D.: Small molecule screening on chemical microarrays, in Methods and Principles in Medicinal Chemistry, Vol. 19: Protein-Ligand Interactions, ed. Böhm, H.-J.; Schneider, G., Wiley-VCH, Weinheim, 2003, pp 213-236.

135 Xu, Q.; Lam, K.S.: Protein and chemical microarrays - powerful tools for proteomics. J. Biomed. Biotech.

136 Kumble, K.D.: Protein microarrays: new tools for pharmaceutical development. Anal. Bioanal. Chem. 2003, 377, 812-819.

137 Hamuro, Y.; Coales, S.J.; Southern, M.R.; Nemeth-Cawley, J.F.; Stranz, D.D.; Rod, G.P.: Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. J. Biomol. Tech. 2003, 14, 171-182.

138 Chalmers, M.J.; Busby, S.A.; Pascal, B.D.; He, Y.; Hendrickson, C.L.; Marshall, A.G.; Griffin, P.R.: Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 2006.

139 Powell, K.D.; Fitzgerald, M.C.: High-throughput screening assay for the tunable selection of protein ligands. J. Combinat. Chem. 2004, 6, 262-269.

140 Chu, Y.-H.; Dunayevskiy, Y.M.; Kirby, D.P.; Vouros, P.; Karger, B.L.: Affinity capillary electrophoresis-mass spectrometry for screening combinatorial libraries. J. Am. Chem. Soc. 1996, 118, 7827-7835.

Was this article helpful?

0 0

Post a comment