References

1 Falb, D., Jindal, S.: Chemical genomics: bridging the gap between the proteome and therapeutics. Curr. Opin. Drug Discovery Dev. 2002, 5, 532-539.

2 Reviewed in: Knight, Z.A., Shokat, K.M.: Features of selective kinase inhibitors. Chem. Biol. 2005, 12, 621-637.

3 Windzor, D.J., Sawyer, W.H.: Quantitative Characterization of Ligand Binding. Wiley-Liss, New York, 1995.

4 Hajduk, P., Meadows, R.P., Fesik, S.W.: NMR-based screening in drug discovery. Q. Rev. Biophys. 1999, 32, 211-240.

5 Gradl, G., Gunther, R., Sterrer, S.: Fluorescence correlation spectroscopy (FCS): measuring biological interactions in microstructures. BioMethods 1999, 10, 331-351.

6 Day, Y.S., Baird, C.L., Rich, R.L., Myszka, D.G.: Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci. 2002, 11, 1017-1025.

7 Cunningham, B.T., Li, P., Schulz, S., Lin, B., Baird, C., Gerstenmaier, J., Genick, C., Frankwang, E.F., Laing, L.: Label-free assays on the bind system. J. Biomol. Screen. 2004, 9, 481-490.

8 Reviewed in: Kelly, M.A., McLellan, T.J., Rosner, P.J.: Strategic use of affinity-based mass spectrometry techniques in the drug discovery process. Anal. Chem. 2002, 74, 1-9.

9 Kaur, S., McGuire, L., Tang, D., Dollinger, G., Heubner, V.: Affinity selection and mass spectrometry-based strategies to identify lead compounds in combinatorial libraries. J. Prot. Chem. 1997, 16, 505-511.

10 Dunayevskiy, Y.M., Lai, J.-J., Quinn, C., Talley, F., Vouros, P.: Mass spectrometric identification of ligands selected from combinatorial libraries using gel filtration. Rapid Comm. Mass Spectrom. 1997, 11, 1178-1184.

11 Wieboldt, R., Zweigenbaum, J., Henion, J.: Immunoaffinity ultrafiltration with ion spray hplc/ms for screening small-molecule libraries. Anal. Chem. 1997, 69, 1683-1691.

12 Blom, K.F., Larsen, B.S., McEwen, C.N.: Determining affinity-selected ligands and estimating binding affinities by online size exclusion chromatography/liquid chromatography-mass spectrometry. J. Comb. Chem. 1999, 1, 82-90.

13 Siegel, M.M., Tabei, K., Bebernitz, G.A., Baum, E.Z.: Rapid methods for screening low molecular mass compounds non-covalently bound to proteins using size exclusion and mass spectrometry applied to inhibitors of human cytomegalovirus proteases. J. Mass Spectrom. 1998, 33, 264-273.

14 Davis, R.G., Anderegg, R.J., Blanchard, S.G.: Iterative size-exclusion chromatography coupled with liquid chromatographic mass spectrometry to enrich and identify tight-binding ligands from complex mixtures. Tetrahedron 1999, 55, 11653-11667.

15 Moy, F.J., Haraki, K., Mobilio, D., Walker, G., Powers, R., Tabei, K., Tong, H., Siegel, M.M.: MS/NMR: A structure-based approach for discovering protein ligands and for drug design by coupling size exclusion chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Anal. Chem. 2001, 73, 571-581.

16 Zhao, Y.-Z., van Breemen, R.B., Nikolic, D., Huang, C.-R., Woodbury, C.P., Schilling, A., Venton, D.L.: Screening solution-phase combinatorial libraries using pulsed ultrafiltration/electrospray mass spectrometry. J. Med. Chem. 1997, 40, 4006-4012.

17 Colton, I.J., Carbeck, J.D., Rao, J., Whitesides, G.M.: Affinity capillary electrophoresis: a physical-organic tool for studying interactions in biomolecular recognition. Electro-phoresis 1998, 19, 369-382.

18 Dunayevskiy, Y.M., Lyubarskaya, Y.V., Chu, Y.-H., Vouros, P., Karger, B.L.: Simultaneous measurement of nineteen binding constants of peptides to vancomycin using affinity capillary electrophoresis-mass spectrometry. J. Med. Chem. 1998, 41, 1201-1204.

19 Chu, Y.-H., Dunayevskiy, Y.M., Kirby, D.P., Vouros, P., Karger, B.L.: Affinity capillary electrophoresis-mass spectrometry for screening combinatorial libraries. J. Am. Chem. Soc. 1996, 118, 78277835.

20 Davidson, W., Hopkins, J.L., Jeanfavre, D.D., Barney, K.L., Kelly, T.A., Grygon, C.A.: Characterization of the allosteric inhibition of a protein-protein interaction by mass spectrometry. J. Am. Soc. Mass. Spectrom. 2003, 14, 8-13.

21 Muckenschnabel, I., Falchetto, R., Mayr, L.M., Filipuzzi, I.: SpeedScreen: label-free liquid chromatography-mass spectrometry-based high-throughput screening for the discovery of orphan protein ligands. Anal. Biochem. 2004, 324, 241-249.

22 Ganem, B., Li, Y.-T., Henion, J.D.: Detection of noncovalent receptor-ligand complexes by mass spectrometry. J. Am. Chem. Soc. 1991, 113, 6294.

23 Loo, J.A.: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 2000, 200, 175-186.

24 Heck, A.J.R., Van den Heuvel, R.H.H.: Investigation of intact protein complexes by mass spec-trometry. Mass Spectom. Rev. 2004, 23, 368-389.

25 Clark, S.M., Konermann, L.: Diffusion measurements by electrospray mass spectrometry for studying solution-phase noncovalent interactions. J. Am. Soc. Mass. Spectrom. 2003, 14, 430-441.

26 Breuker, K.: New mass spectrometric methods for the quantification of protein-ligand binding in solution. Angew. Chem. Int. Ed. 2004, 43, 22-25.

27 No reference.

28 Zhu, M.M., Rempel, D.L., Gross, M.L.: Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants. J. Am. Soc. Mass Spectrom. 2004, 15, 388397.

29 Powell, K.D., Fitzgerald, M.C.: Accuracy and precision of a new H/D exchange- and mass spectrometry-based technique for measuring the thermodynamic properties of protein-peptide complexes. Biochemistry 2003, 42, 4962-4970.

30 Powell, K.D., Fitzgerald, M.C.: High-throughput screening assay for the tunable selection of protein ligands. J. Comb. Chem. 2004, 6, 262-269.

31 Zhu, M.M., Rempel, D.L., Gross, M.L.: Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants. J. Am. Soc. Mass Spectrom. 2004, 15, 388-397.

32 Clark, S.M., Leaist, D.G., Konermann, L.: Taylor dispersion monitored by electrospray mass spectrometry: a novel approach for studying diffusion in solution. Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462.

33 Reviewed in: Schermann, S.M., Simmons, D.A., Konermann, L.: Mass spectrometry-based approaches to protein-ligand interactions. Expert Rev. Proteomics 2005, 4, 475-485.

34 Zehender, H., Le Goff, F., Lehmann, N., Filipuzzi, I., Mayr, L.M.: SpeedScreen: the ''missing link'' between genomics and lead discovery. J. Biomol. Screen. 2004, 9, 498-505.

35 Huyer, G., Kelly, J., Moffat, J., Zamboni, R., Zongchao, J., Gresser, M.J., Ramachandran: affinity selection from peptide libraries to determine substrate specificity of protein tyrosine phosphatases. Anal. Biochem. 1998, 258, 19-30.

36 Ng, E.S.M., Yang, F., Kameyama, A., Palcic, M.M., Hindsgaul, O., Schriemer, D.C.: High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry. Anal. Chem. 2005, 77, 6125-6133.

37 Reviewed in: Triolo, A., Altamura, M., Cardinali, F., Sisto, A., Maggi, C.A.: Mass spectrometry and combinatorial chemistry: a short outline. J. Mass Spectrom. 2001, 36, 1249-1259.

38 Flarakos, J., Morand, K.L., Vouros, P.: High-throughput solution-based medicinal library screening against human serum albumin. Anal. Chem. 2005, 77, 1345-1353.

39 Annis, D.A., Nazef, N., Chuang, C.-C., Scott, M.P., Nash, H.M.: A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures. J. Am. Chem. Soc. 2004, 126, 15495-15503.

40 Annis, D.A., Athanasopoulos, J., Curran, P.J., Felsch, J.S., Kalghatgi, K., Lee, W.H., Nash, H.M., Orminati, J.P.A., Rosner, K.E., Shipps Jr., G.W., Thaddupathy, G.R.A., Tyler, A.N., Vilenchik, L., Wagner, C.R., Wintner, E.A.: An affinity selection-mass spectrometry method for the identification of small molecule ligands from self-encoded combinatorial libraries. discovery of a novel antagonist of E. coli dihydrofolate reductase. Int. J. Mass. Spectrom. 2004, 238, 77-83.

41 Coburn, C.A., Stachel, S.J., Li, Y.-M., Rush, D.M., Steele, T.G., Chen-Dodson, E., Holloway, M.K., Xu, M., Huang, Q., Lai, M.-T., DiMuzio, J., Crouthamel, M.-C., Shi, X.-P., Sardana, V., Chen, Z., Munshi, S., Kuo, L., Makara, G.M., Annis, D.A., Tadikonda, P.K., Nash, H.M., Vacca, J.P., Wang, T.: Identification of a small molecule nonpeptide active site beta-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases. J. Med. Chem. 2004, 47, 6117-6119.

42 Nash, H.N., Birnbaum, S., Wintner, E.A., Kalghatgi, K., Shipps, G., Jindal, S.: U.S. Patent 6 207 861.

43 Wintner, E.A., Moallemi, C.C.: Quantized surface complementarity diversity (QSCD): a model based on small molecule-target complementarity. J. Med. Chem. 2000, 43, 19932006.

44 Carell, T., Wintner, E.A., Sutherland, A.J., Rebek, J. Jr: New promise in combinatorial chemistry: synthesis, characterization, and screening of small-molecule libraries in solution. Chem. Biol. 1995, 2, 171-183.

45 Hughes, I.: Design of self-coded combinatorial libraries to facilitate direct analysis of ligands by mass spectrometry. J. Med. Chem. 1998, 41, 3804-3811.

46 As a simplistic explanation, consider solving two coupled equations where A B = 24 and A B C = 48. It is clear that C = 2, since 2 24 = 48 is the only solution for C that gives the correct result. However, the pair (A,

B) could be (4, 6) or (3, 8) or (2, 12), etc., since the product of either of these pairs is 24.

47 The Kd for HSA binding to racemic warfarin has been reported for 3-6 mM by various techniques, including frontal analysis and equilibrium dialysis, and is temperature- and pH-dependent. See: Loun, B., Hage, D.S.: Chiral separation mechanisms in protein-based HPLC columns. 1. Thermodynamic studies of (R)- and (S)-warfarin binding to immobilized human serum albumin. Anal. Chem. 1994, 66, 3814-3822.

48 International Patent WO 02/083139, 2002.

49 Whitehurst, C.E., Nazef,N., Annis, D.A., Hou, Y., Murphy, D.M., Spacciapoli, P., Yao, Z., Ziebell, M. R., Cheng, C.-C., Shipps, G.W. Jr, Felsch, J.S., Lau, D., Nash, H.M.: Discovery and characterization of orthosteric and allosteric muscarinic M2 acetylcholine receptor ligands by affinity selection-mass spectrometry. J. Biomol. Screen. 2006, 11, 194-207.

50 Smith, K., Windsor, W.: personal communication.

51 Caufield, M.P., Birdsall, N.J.M.: Pharmacol. Rev. 1998, 50, 279-290.

52 Trankle, C., Andresen, I., Lambrecht, G., Mohr, K.: Mol. Pharmacol. 1998, 53, 304-312.

53 Robertson, J.G.: Mechanistic basis of enzyme-targeted drugs. Biochemistry 2005, 44, 5561-5571.

54 Shimizu, Y.: Tuning the function of ZAP-70 in vivo. Trends Immunol. 2001, 22, 541-542.

55 McCormack, J.J.: The rational design, mechanistic study and therapeutic application of chemical compounds, in Comprehensive Medicinal Chemistry, ed. Hansch, C., Sammes, P.G., Taylor, J.B., Pergamon Press, Elmsford, 1990, p. 271.

56 Reviewed in: Christopoulos, A.: Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 2002, 1, 198-210.

57 Ehlert, F.L.: Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 1998, 33, 187-194.

58 Scott, M.P., Makara, G., Nan, Y., Mansoor, F., Takonda, P., Liu, B., Hou, Y., Whitehurst, C., Falb, D., Siddiqui, A., Alaoui-Ismaili, M.H.: Identification of novel and selective Akt-1 inhibitors using affinity-based screening of both basal and activated forms of Akt-1. Am. Assoc. Cancer Res. Meet. 2003, Poster.

59 Bellacosa, A., Testa, J.R., Staal, S.P., Tsichilis, P.N.: A role for akt in mediating the estrogenic functions of epidermal growth factor and insulinlike growth factor. Science 1991, 254, 274-277.

60 Barnett, S.F., Defeo-Jones, D., Fu, S., Hancock, P.J., Haskell, K.M., Jones, R.E., Kahana, J.A., Kral, A.M., Leander, K., Lee, L.L., Malinowski, J., Mcavoy, E.M., Nahas, D.D., Robinson, R.G., Huber, H.E.: Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J. 2005, 385, 399-408.

61 Burke, M.D., Berger, E.M., Schreiber, S.L.: Generating diverse skeletons of small molecules combinatorially. Science 2003, 302, 613-618.

62 Schreiber, S.L.: The small-molecule approach to biology. Chemical genetics and diversity-oriented organic synthesis make possible the systematic exploration of biology. Chem. Eng. News 2003, 81, 51-61.

63 cAMP-ScreenTM chemoluminescent immunoassay system, Applied Biosystems, 850 Lincoln Centre Dr., Foster City, CA 94404, USA.

64 Lambrecht, G., Feifel, R., Wagner-Roder, M., Strohmann, C., Zilch, H., Tacke, R., Wailbroeck, M., Christophe, J., Boddeke, H., Mutschler, E.: Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes. Eur. J. Pharmacol. 1989, 168, 7178.

65 Lundblad, L.K.A., Persson, C.G.A.: The epithelium and the pharma cology of guinea pig tracheal tone in vitro. Br. J. Pharmacol. 1988, 93, 909917.

66 Braunwalder, A.F., Yarwood, D.R., Sills, M.A., Lipson, K.E.: Measurement of the protein tyrosine kinase activity of c-src using time-resolved fluorometry of europium chelates. Anal Biochem. 1996, 238, 159-164.

67 Trankle, C., Andresen, I., Lambrecht, G., Mohr, K.: M2 receptor binding of the selective antagonist AF-DX 384: possible involvement of the common allosteric site. Mol. Pharmacol. 1998, 53, 304-312

68 May, L.T., Christopoulos, A.: Allosteric modulators of G proteincoupled receptors. Curr. Opin. Pharmacol. 2003, 3, 1-6.

Was this article helpful?

0 0

Post a comment