Nl Pis Pc

Nanoelectrospray ionization: flow rates range from a few nanoliters per minutes to a few hundred nanoliters per minutes; nanoelectrospray is performed with pulled capillaries or on chips which serve as emitter

Atmospheric pressure chemical ionization

Atmospheric pressure photoionization

Matrix assisted laser desorption ionization

Triple quadrupole: Q1 and Q3 are the mass resolving quadrupoles, q2 is the collision cell

Quadrupole ion trap: refers in general to a 3D ion trap instrument

Linear ion trap: refers in general to 2D ion trap; ion ejection is either axial or radial

Triple quadrupole linear ion trap instrument. In this instrument the quadrupole Q3 is operated either in RF/DC mode or in RF mode

Quadrupole-time of flight instrument

Tandem time of flight instrument

Fourier transform ion cyclotron resonance instrument

Multistage mass spectrometry: applies generally for ion trap mass spectrometers

Collision induced dissociation: the dissociation of ions after collisional excitation

A technique specific to reflectron time-of-flight mass spectrometers where product ions of metastable transitions or collision-induced dissociations generated in the drift tube prior to entering the reflectron are m/z separated to yield product ion spectra

Neutral loss spectrum Product ion spectrum Precursor ion spectrum Selected reaction monitoring mode

58 | 1 Mass Spectrometry in Bioanalysis - Methods, Principles and Instrumentation 1.8

Common Definitions and Abbreviations

The intention of this section is to provide to the reader a rapid and comprehensive reference for the most common definitions and acronyms used in mass spectrometry. Currently IUPAC has initiated a project to update and extend the definitions of terms related to the field of mass spectrometry. The definitions presented here (Table 1.6) are from the third draft document [16]. For more details and the latest updates, please consult www.msterms.com.

References

1 Thomson, J. J.: Rays of positive electricity. Proc. R. Soc. 1913, 89, 1-20.

2 Budzikiewicz, H.; Grigsby, R. D.: Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrom. Rev. 2006, 25, 146-157.

3 Dempster, A. J.: A new method of positive ray analysis. Phys. Rev. 1918, 11, 316-324.

4 Gohlke, R. S.: Time-of-flight mass spectrometry and gas-liquid partition chromatography. Anal. Chem. 1959, 31, 535-541.

5 Arpino, P.; Baldwin, M. A.; McLafferty, F. W.: Liquid chroma-tography-mass spectrometry. II. Continuous monitoring. Biomed. Mass Spectrom. 1974, 1, 80-82.

6 Ito, Y.; Takeuchi, T.; Ishii, D.; Goto, M.: Direct coupling of micro highperformance liquid chromatography with fast atom bombardment mass spectrometry. J. Chromatogr. 1985, 346, 161-166.

7 Caprioli, R. M.; Fan, T.; Cottrell, J. S.: A continuous-flow sample probe for fast atom bombardment mass spectrometry. Anal. Chem. 1986, 58, 2949-2954.

8 Blakley, C. R.; Vestal, M. L.: Thermospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 1983, 55, 750-754.

9 Willoughby, R. C.; Browner, R. F.: Monodisperse aerosol generation interface for combining liquid chromatography with mass spectroscopy. Anal. Chem. 1984, 56, 2626-2631.

10 Finnigan, R. E.: Quadrupole mass spectrometers. Anal. Chem. 1994, 66, 969A-975A.

11 Paul, W.: Electromagnetic Traps for Charged and Neutral Particles, Nobel Lecture, 8 December, 1989.

12 Yost, R. A.; Enke, C. G.: Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 1978, 100, 2274-2275.

13 Karas, M.; Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299-2301.

14 Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.

15 Sparkeman, D. O.: MassSpec Desk Reference, 1st edn, Global View Publishing, Pittsburgh, 2000.

16 Murray, K. K.; Boyd, R. K.; Eberlin, M. N.; Langley, G. J.; Li, L.; Naito, Y.: Standard definitions of terms relating to mass spectrometry, 2006, available at: www.msterms.com.

17 Bristow, A. W. T.: Accurate mass measurement for the determination of elemental formula - a tutorial. Mass Spectrom. Rev. 2006, 25, 99111.

18 Ausloos, P.; Clifton, C. L.; Lias, S. G.; Mikaya, A. I.; Stein, S. E.;

Tchekhovskoi, D. V.; Sparkman, O. D.; Zaikin, V.; Zhu, D.: The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 1999, 10, 287-299.

19 Munson, B.: Development of chemical ionization mass spectrometry. Int. J. Mass Spectrom. 2000, 200, 243-251.

20 Maurer, H. H.: Role of gas chromatography-mass spectrometry with negative ion chemical ionization in clinical and forensic toxicology, doping control, and biomonitoring. Ther. Drug Monit. 2002, 24, 247254.

21 Doroshenko, V. M.; Laiko, V. V.; Taranenko, N. I.; Berkout, V. D.; Lee, H. S.: Recent developments in atmospheric pressure MALDI mass spectrometry. Int. J. Mass Spectrom. 2002, 221, 39-58.

22 Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004, 306, 471-473.

23 Cody, R. B.; Laramee, J. A.; Durst, H. D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005, 77, 2297-2302.

24 Caldecourt, V. J.; Zakett, D.; Tou, J. C.: An atmospheric-pressure ionization mass spectrometer/mass spectrometer. Int. J. Mass Spectrom. Ion Phys. 1983, 49, 233-251.

25 Bruins, A. P.; Covey, T. R.; Henion, J. D.: Ion spray interface for combined liquid chromatography/ atmospheric pressure ionization mass spectrometry. Anal. Chem. 1987, 59, 2642-2646.

26 Wilm, M.; Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 1996, 68, 1-8.

27 Zhang, S.; Van Pelt, C. K.: Chip-based nanoelectrospray mass spec-trometry for protein characterization. Exp. Rev. Proteom. 2004, 1, 449-468.

28 Kebarle, P.: A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J. Mass Spectrom. 2000, 35, 804-817.

29 Hopfgartner, G.; Bean, K.; Henion, J.; Henry, R.: Ion spray mass spectrometric detection for liquid chromatography: a concentration- or a mass-flow-sensitive device?

30 Zell, M.; Husser, C.; Hopfgartner, G.: Low picogram determination of Ro 48-6791 and its major metabolite, Ro 48-6792, in plasma with column-switching microbore highperformance liquid chromatography coupled to ion spray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1107-1114.

R. N.; Haegele, K. D.; Horning, E. C.: Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal. Chem. 1975, 47, 2369-2372.

32 Robb, D. B.; Covey, T. R.; Bruins, A. P.: Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 2000, 72, 3653-3659.

33 Raffaelli, A.; Saba, A.: Atmospheric pressure photoionization mass spectrometry. Mass Spectrom. Rev. 2003, 22, 318-331.

34 Bos, S. J.; Leeuwen, S. M.; Karst, U.: From fundamentals to applications: recent developments in atmospheric pressure photoionization mass spectrometry. Anal. Bioanal.Chem. 2006, 384, 85-99.

35 Gallagher, R. T.; Balogh, M. P.; Davey, P.; Jackson, M. R.; Sinclair, I.; Southern, L. J.: Combined electrospray ionization-atmospheric pressure chemical ionization source for use in high-throughput LC-MS applications. Anal. Chem. 2003, 75, 973-977.

36 Syage, J. A.; Hanold, K. A.; Lynn, T. C.; Horner, J. A.; Thakur, R. A.: Atmospheric pressure photoioniza-tion. II. Dual source ionization. J. Chromatogr. A 2004, 1050, 137-149.

37 Takats, Z.; Wiseman, J. M.; Cooks, R. G.: Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology.

J. Mass Spectrom. 2005, 40, 1261-1275.

38 Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M.: Detection technologies: ambient mass spectrometry. Science 2006, 311, 1566-1570.

39 Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; To, Y.: Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.

40 Rappsilber, J.; Moniatte, M.; Nielsen, M. L.; Podtelejnikov, A. V.; Mann, M.: Experiences and perspectives of MALDI MS and MS/MS in proteomic research. Int. J. Mass Spectrom. 2003, 226, 223-237.

41 Nielen, M.: MALDI Time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 1999, 18, 309-344.

42 Gut, I. G.: DNA analysis by MALDI-TOF mass spectrometry. Hum. Mutat. 2004, 23, 437-441.

43 Schiller, J.; Suss, R.; Arnhold, J.; Fuchs, B.; Lessig, J.; Muller, M.; Petkovic, M.; Spalteholz, H.; Zschornig, O.; Arnold, K.: Matrixassisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res. 2004, 43, 449-488.

44 Cohen, L. H.; Gusev, A. I.: Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal.Chem. 2002, 373, 571-586.

45 McCombie, G.; Knochenmuss, R.: Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences. Anal. Chem. 2004, 76, 4990-4997.

46 Donegan, M.; Tomlinson, A. J.; Nair, H.; Juhasz, P.: Controlling matrix suppression for matrix-assisted laser desorption/ionization analysis of small molecules. Rapid Commun. Mass Spectrom. 2004, 18, 1885-1888.

47 Go, E. P.; Prenni, J. E.; Wei, J.; Jones, A.; Hall, S. C.; Witkowska, H. E.; Shen, Z.; Siuzdak, G.: Desorption/ ionization on silicon time-of-flight/ time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 2504-2506.

48 Lewis, W. G.; Shen, Z.; Finn, M. G.; Siuzdak, G.: Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications. Int. J. Mass Spectrom. 2003, 226, 107-116.

49 Tang, N.; Tornatore, P.; Weinberger, S. R.: Current developments in SELDI affinity technology. Mass Spectrom. Rev. 2003, 23, 34-44.

50 Caprioli, R. M.; Farmer, T. B.; Gile, J.: Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751-4760.

51 Rohner, T. C.; Staab, D.; Stoeckli, M.: MALDI mass spectrometric imaging of biological tissue sections. Mech. Ageing Dev. 2005, 126, 177-185.

52 Reyzer, M. L.; Hsieh, Y.; Ng, K.; Korfmacher, W. A.; Caprioli, R. M.: Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2003, 38, 1081-1092.

53 March, R. E.; Todd, J. F. J.: Quadru-pole Ion Trap Mass Spectrometry, 2nd edn (vol. 165), Wiley-Interscience, New York, 2005, 346.

54 de Hoffmann, E.: Tandem mass spectrometry: a primer. J. Mass Spectrom. 1996, 31, 129-137.

55 Schwartz, J. C.; Wade, A. P.; Enke, C. G.; Cooks, R. G.: Systematic delineation of scan modes in multidimensional mass spectrometry. Anal. Chem. 1990, 62, 1809-1818.

56 Chin, K.; Channick, R.; Bosentan, B.: Expert Rev. Cardiovasc. Ther. 2004, 2, 175-182.

57 Paul, W.; Steinwedel, H.: A new mass spectrometer without magnetic field. Zeitschrift fur Naturforschung 1953, 8a, 448-450.

58 Douglas, D. J.; Frank, A. J.; Mao, D.: Linear ion traps in mass spectrome-

59 Schwartz, J. C.; Senko, M. W.; Syka, J. E. P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659-669.

60 Hager, J. W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 2002, 16, 512-526.

61 Hopfgartner, G.; Varesio, E.; Tschäppät, V.; Grivet, C.; Emmanuel Bourgogne, E.; Leuthold, L. A.: Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macro-molecules. J. Mass Spectrom. 2004, 39, 845-855.

62 Hopfgartner, G.; Zell, M.: Q trap MS: a new tool for metabolite identification, in Using Mass Spectrometry for Drug Metabolism Studies, ed. Korf-macher, W. A., CRC Press, 2004.

63 Mamyrin, B. A.: Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int. J. Mass Spectrom. 2001, 206, 251-266.

64 Uphoff, A.; Grotemeyer, J.: The secrets of time-of-flight mass spectrometry revealed. Eur. J. Mass Spectrom. 2003, 9, 151-164.

65 Guilhaus, M.; Selby, D.; Mlynski, V.: Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom. Rev. 2000, 19, 65-107.

66 Morris, H. R.; Paxton, T.; Dell, A.; Langhorne, J.; Berg, M.; Bordoli, R. S.; Hoyes, J.; Bateman, R. H.: High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/ orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 1996, 10, 889-896.

67 Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A.: An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 2001, 36, 849-865.

68 Hopfgartner, G.; Chernushevich, I. V.; Covey, T.; Plomley, J. B.; Bonner, R.: Exact mass measurement of product ions for the structural elucidation of drug metabolites with a tandem quadrupole orthogonal-acceleration time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 1999, 10, 1305-1314.

69 Wolff, J. C.; Eckers, C.; Sage, A. B.; Giles, K.; Bateman, R.: Accurate mass liquid chromatography/mass spectrometry on quadrupole orthogonal acceleration time-of-flight mass analyzers using switching between separate sample and reference sprays. 2. Applications using the dual-electrospray ion source. Anal. Chem. 2001, 73, 2605-2612.

70 Martin, R. L.; Brancia, F. L.: Analysis of high mass peptides using a novel matrix-assisted laser desorption/ ionisation quadrupole ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1358-1365.

71 Vestal, M. L.; Campbell, J. M.: Tandem time-of-flight mass spectrometry. Methods Enzymol. 2005, 402, 79-108.

72 Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A.: A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics.

Anal. Bioanal.Chem. 2003, 376, 952965.

73 Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S.: Fourier transform ion cyclotron resonance mass spectrome-try: a primer. Mass Spectrom. Rev. 1998, 17, 1-35.

74 Syka, J. E. P.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F.: Novel linear quadrupole ion trap/FTmass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications.

75 Makarov, A.: Electrostatic axially harmonic orbital trapping: a highperformance technique of mass analysis. Anal. Chem. 2000, 72, 1156-1162.

76 Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S.: Performance evaluation of a hybrid linear ion trap/ orbitrap mass spectrometer. Anal. Chem. 2006, 78, 2113-2120.

77 Wiza, J. L.: MicroChannel plate detectors. Nucl. Instr. Methods 1979, 162, 587-601.

78 Birkinshaw, K.: Fundamentals of focal plane detectors. J. Mass Spectrom. 1997, 32, 795-806.

79 Hopfgartner, G.; Bourgogne, E.: Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom. Rev. 2003, 22, 195-214.

80 Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M.: Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019-3030.

81 Kostiainen, R.; Kotiaho, T.; Kuuranne, T.; Auriola, S.: Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. J. Mass Spectrom. 2003, 38, 357-372.

82 Staack, R. F.; Varesio, E.; Hopfgartner, G.: The combination of liquid chromatography/tandem mass spectrometry and chip-based infusion for improved screening and characterization of drug metabolites. Rapid Commun. Mass Spectrom. 2005, 19, 618-626.

83 Hopfgartner, G.; Vilbois, F.: The impact of accurate mass measurements using quadrupole/time-of-flight mass spectrometry on the characterisation and screening of drug metabolites. Analusis 2000, 28, 906-914.

84 Zhang, H.; Zhang, D.; Ray, K.: A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/ mass spectrometric analyses. J. Mass Spectrom. 2003, 38, 1110-1112.

85 Zhu, M.; Ma, L.; Zhang, D.; Ray, K.; Zhao, W.; Humphreys, W. G.; Skiles, G.; Sanders, M.; Zhang, H.: Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab. Dispos. 2006, 34, 1722.

86 Beranova-Giorgianni, S.: Proteome analysis by two-dimensional gel electrophoresis and mass spectrome-try: strengths and limitations. TrAC 2003, 22, 273-281.

87 Wolters, D. A.; Washburn, M. P.; Yates, J. R. III: An automated multidimensional protein identification technology for shotgun pro-teomics. Anal. Chem. 2001, 73, 56835690.

88 Wang, H.; Hanash, S.: Multidimensional liquid phase based separations in proteomics. J. Chromatogr. B 2003, 787, 11-18.

89 Dunn, W. B.; Bailey, N. J. C.; Johnson, H. E.: Measuring the metabolome: current analytical technologies. Analyst 2005, 130, 606-625.

90 Benesch, J. L. P.; Robinson, C. V.: Mass spectrometry of macromolec-ular assemblies: preservation and dissociation. Cur.Opin. Struc. Biol. 2006, 16, 245-251.

91 Sauer, S.: Typing of single nucleotide polymorphisms by MALDI mass spectrometry: Principles and diagnostic applications. Clin. Chim. Acta 2006, 363, 95-105.

Part II

Studying target-ligand interactions analyzing the ligand by MS

Drug Screening Using Gel Permeation Chromatography Spin Columns Coupled with ESI-MS

Marshall M. Siegel 2.1

Introduction

2.1.1 Preface

The pharmaceutical industry has invested heavily in high throughput screening (HTS) technologies to find potential drug candidates present in large compound libraries that interact with a biological system of a potential therapeutic interest. Very often these screening techniques mimic the cellular function of the target protein. The HTS methods generally take considerable time to develop and are unique for each biological system of interest, but once developed they analyze single compounds in large arrays at high sensitivity, accounting for the high throughput capability of the methodology. The HTS methodology has been the technique of choice of pharmaceutical companies to initially screen corporate libraries for exploratory drug leads. Recently, however, a number of structurally based methods have been developed to screen corporate libraries based on the ability to observe non-covalent bonding between a protein of therapeutic interest and members of a compound library [1]. We will describe in this chapter the use of gel permeation chromatography (GPC) in the spin column mode with mass spectral detection as a reliable structural screening methodology that can be performed at high speed with large numbers of compounds, especially when analyzed as mixtures, requiring nearly no development time. This technology can be used as a primary screening technique as well as a secondary screening method to complement and verify results obtained with HTS methods.

Was this article helpful?

0 0

Post a comment