Physiological Versus Behavioral Adaptation

Metabolism is the sum of all chemical reactions taking place in an organism, whereas physiology consists of the processes involved in an organism carrying out its function. Physiological adaptations are changes in the metabolism or physiology of organisms, giving them specific advantages for a given set of environmental circumstances. Because organisms must cope with the rigors of their physical environments, physiological adaptations for temperature regulation, water conservation, varying metabolic rate, and dormancy or hibernation allow organisms to adjust to the physical environment or respond to changing environmental conditions.

Desert environments, for example, pose a special set of problems for organisms. Hot, dry environments require physiological mechanisms that enable organisms to conserve water and resist prolonged periods of high temperature. Highly efficient kidneys and other excretory organs that assist organisms in retaining water are physiological adaptations related to the metabolisms of desert organisms. The kangaroo rat is a desert rodent extremely well adapted to its habitat. Kangaroo rats do not drink, but rather can obtain all of their water from the seeds they eat. They produce highly concentrated urine and feces with very low water content.

Adaptation to a specific temperature range is also an important physiological adaptation. Organisms cannot live in environments with temperatures beyond their range of thermal tolerance, but some organisms are adapted to warmer and others to colder environments. Metabolic response to temperature is quite variable among animals, but most animals are either homeo-thermic (warm-blooded) or poikilothermic (coldblooded). Homeotherms maintain constant body temperatures at specific temperature ranges. Although a homeotherm's metabolic heat production is constant when the organism is at rest and when environmental temperature is constant, strenuous exercise produces excess heat that must be dissipated into the environment, or overheating and death will result. Physiological adaptations that enable homeotherms to rid their bodies of heat are the ability to increase blood flow to the skin's surface, sweating, and panting, all of which promote heat loss to the atmosphere.

Behavioral adaptations allow organisms to respond appropriately to various environmental stimuli. Actions taken in response to various stimuli are adaptive if they enhance survival. Migrations are behavioral adaptations because they ensure adequate food supplies or the avoidance of adverse environmental conditions. Courtship rituals that help in species recognition prior to mating, reflex and startle reactions allowing for quick retreats from danger, and social behavior that fosters specialization and cooperation for group survival are behavioral adaptations.

Because organisms must also respond and adapt to an environment filled with other organisms—including potential predators and competitors—adaptations that minimize the negative effects of biological interactions are favored by natural selection. Many times the interaction between species is so close that each species strongly influences the others in the interaction and serves as the selective force causing change. Under these circumstances, species evolve together in a process called coevolution. The adaptations resulting from coevolution have a common survival value to all the species involved in the interaction. The coevolution of flowers and their pollinators is a classic example of these tight associations and their resulting adaptations.

Metabolism Masterclass

Metabolism Masterclass

Are You Sick And Tired Of All The Fat-Burning Tricks And Trends That Just Don’t Deliver? Well, Get Set To Discover The Easy, Safe, Fast, And Permanent Way To Mega-Charge Your Metabolism And Lose Excess Fat Once And For All! This Weight Blasting Method Is Easy AND Natural… And Will Give You The Hot Body And Killer Energy Levels You’ve Been Dreaming Of.

Get My Free Ebook

Post a comment