1. Yamashita, M.; Fenn, J.B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem., 88,4451-4459 (1984).

2. Hofstadler, S.A.; Bakhtiar, R.; Smith, R.D. Electrospray ionization mass spectrometry. 1. Instrumentation and spectral interpretation. J. Chem. Educ., 73, A82 (1996).

3. Hillenkamp, F.; Karas, M.; Beavis, R.C.; Chait, B.T. Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry of Biopolymers. Anal. Chem., 63, 1193-1202(1991).

4. Bakhtiar, R.; Hofstadler, S.; Muddiman, D.; Smith, R. Matrix-assisted laser disorption/ionization mass spectrometry. J. Chem. Educ., 74, 1288-1292 (1997).

5. Henry, K.D.; Williams, E.R.; Wang, B.H.; McLafferty, F.W.; Shabanowitz, J.; Hunt, D.F. Fourier-Transform Mass Spectrometry of Large Molecules by Elec-trospray Ionization. Proc. Natl. Acad. Sci. USA, 86, 9075-9078 (1989).

6. Senko, M.W.; Hendrickson, C.L.; Pasatolic, L.; Marto, J.A.; White, F.M.; Guan, S.H.; Marshall, A.G. Electrospray ionization Fourier transform ion cyclotron resonance at 9.4 T. Rapid Comm. Mass Spectrom., 10, 1824-1828 (1996).

7. Gorshkov, M.V.; Tolic, L.P.; Udseth, H.R.; Anderson, G.A.; Huang, B.M.; Bruce, J.E.; Prior, D.C.; Hofstadler, S.A.; Tang, L.; Chen, L.-Z.; Willett, J.A.; Rockwood, A.L.; Sherman, M.S.; Smith, R.D. Electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry at 11.5 Tesla: instrument design and initial results. J. Am. Soc. Mass Spectrom., 9, 692-700 (1998).

8. Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 246, 64-71 (1989).

9. Smith, R.D.; Loo, J.A.; Loo, R.R.O.; Busman, M.; Udseth, H.R. Principles and Practice of Electrospray Ionization - Mass-Spectrometry for Large Polypeptides and Proteins. Mass Spectrom. Rev., 10, 359-451 (1991).

10. Tomlinson, A.J.; Benson, L.M.; Naylor, S. Nonaqueous Solvents in the online Capillary Electrophoresis Mass Spectrometry Analysis of Drug Metabolites. HRC - Journal of High Resolution Chromatography, 17, 175-177 (1994).

11. Greig, M.; Griffey, R.H. Utility of organic bases for improved electrospray mass spectrometry of oligonucleotides. Rapid Commun. Mass Spectrometry, 9,97-102 (1995).

12. Limbach, P.A.; Crain, P.F.; McCloskey, J.A. Characterization of oligonucleotides and nucleic acids by mass spectrometry. Curr. Opin. Biotechnol., 6, 96-102 (1995).

13. Griffey, R.H.; Greig, M.J.; Gaus, H.J.; Liu, K.; Monteith, D.; Winniman, M.; Cummins, L.L. Characterization of oligonucleotide metabolism in vivo via liquid chromatography/electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometer. J. Mass Spectrom., 32, 305-313 (1997).

14. Hannis, J.C.; Muddiman, D.C. Accurate characterization of the tyrosine hydroxylase forensic allele 9.3 through development of electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom., 13, 954-962 (1999).

15. Griffey, R.H.; Hofstadler, S.A.; Sannes-Lowery, K:A.; Ecker, D.J.; Crooke, S.T. Determinants of Aminoglycoside-Binding Specificity for rRNA by Using Mass Spectrometry. Proc. Natl Acad. Sci. USA, 96, 10129-10133 (1999).

16. Hofstadler, S.A.; Sannes-Lowery, K.A.; Crooke, S.T.; Ecker, D. J.; Sasmor, H.; Manalili, S.; Griffey, R.H. Multiplexed Screening of Neutral Mass-Tagged RNA Targets against Ligand Libraries with Electrospray Ionization FTICR MS: A Paradigm for High-Throughput Affinity Screening. Anal. Chem., 71, 3436-3440

17. Sannes-Lowery, K.A.; Drader, J.J.; Griffey, R.H.; Hofstadler, S.A. Fourier transform ion cyclotron resonance mass spectrometry as a high throughput affinity screen to identify RNA binding ligands. TrAC, Trends Anal. Chem., 19,481-491

18. Sannes-Lowery, K.A.; Griffey, R.H.; Hofstadler, S.A. Measuring Dissociation Constants of RNA and Aminoglycoside Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Biochem., 280, 264-271 (2000).

19. Hofstadler, S.A.; Griffey, R.H. Mass spectrometry as a drug discovery platform against RNA targets. Curr. Opin. Drug Discovery Dev., 3, 423-431 (2000).

20. Herman, T.; Westhof, E. Rational Drug Design and High-Throughput Techniques for RNA targets. Combinatorial Chemistry & High-Throughput Screening, 3, 219-234 (2000).

21. Sucheck, S.J.; Wong, C.-H. RNA as a target for small molecules. Curr. Opin. Chem. Biol., 4, 678-686 (2000).

22. Ramos, A.; Gubser, C.C.; Varani, G. Recent solution structures of RNA and its complexes with drugs, peptides and proteins. Curr Opin Struct Biol, 7, 317-323

23. Conn, G.L.; Draper, D.E. RNA structure. Curr. Opin. Struct. Biol., 8, 278-285

24. Batey, R.T.; Rambo, R.P.; Doudna, J.A. Tertiary motifs in RNA structure and folding. Angew. Chem. (Engl), 38, 2326-2343 (1999).

25. Fourmy, D.; Recht, M.I.; Blanchard, S.C.; Puglisi, J.D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science (Washington, D. C.), 274, 1367-1371 (1996).

26. Recht, M.I.; Fourmy, D.; Blanchard, S.C.; Dahlquist, K.D.; Puglisis, J.D. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. Journal of Molecular Biology, 262, 421-436 (1996).

27. Wang, Y.; Hamasaki, K.; Rando, R.R. Specificity of aminoglycoside binding to RNA constructs derived from the 16S rRNA decoding region and the HIV-RRE activator region. Biochemistry, 36, 768-779 (1997).

28. Fourmy, D.; Recht, M.I.; Puglisi, J.D. Binding of Neomycin-class Aminoglyco-side antibiotics to the A-site of 16 rRNA. Journal of Molecular Biology, 277, 347-362 (1998).

29. Fourmy, D.; Yoshizawa, S.; Puglisi, J.D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. Journal of Molecular Biology, 277, 333-345 (1998).

30. Wong, C.-H.; Hendrix, M.; Priestley, E.S.; Greenberg, W.A. Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. Chem. Biol., 5, 397-406 (1998).

31. Recht, M.I.; Douthwaite, S.; Dahlquist, K.D.; Puglisi, J.D. Effect of Mutations in the A Site of 16 S rRNA on Aminoglycoside Antibiotic-Ribosome Interaction. J. Mol. Biol., 286, 33-43 (1999).

32. Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 407, 340-348 (2000).

33. Wimberly, B.T.; Brodersen, D.E.; Clemons, W.M.; Morgan-Warren, R.J.; Carter, A.P.; Vonrhein, C.; Hartsch, T.; Ramakrishnan, V. Structure of the 30S ribosomal subunit. Nature, 407, 327-339 (2000).

34. Hyun Ryu, D.; Rando, R.R. Aminoglycoside binding to human and bacterial ASite rRNA decoding region constructs. Bioorg. Med. Chem., 9,601-2608 (2001).

35. Lynch, S.R.; Puglis, J.D. Structural Origins of Aminoglycoside Specificity for Prokaryotic Ribosomes. J. Mol. Biol., 306, 1037-1058 (2001).

36. Vicens, Q.; Westhof, E. Crystal Structure of Geneticin Bound to a Bacterial 16 S Ribosomal RNA A Site Oligonucleotide. Journal of Molecular Biology, 326, 1175-1188 (2003).

37. Purohit, P.; Stern, S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature, 370, 659-662 (1994).

38. Griffey, R.H.; Sannes-Lowery, K.A.; Drader, J.J.; Mohan, V.; Swayze, E.E.; Hofstadler, S.A. Characterization of Low-Affinity Complexes between RNA and Small Molecules Using Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc., 122, 9933-9938 (2000).

39. Cheng, X.; Chen, R.; Bruce, J.E.; Schwartz, B.L.; Anderson, G.A.; Hofstadler, S.A.; Gale, D.C.; Smith, RD.; Gao, J.; Sigal, G.B. Using Electrospray Ioniza-tion FTICR Mass Spectrometry To Study Competitive Binding of Inhibitors to Carbonic Anhydrase. J. Am. Chem. Soc., 117, 8859-8860 (1995).

40. Greig, M.J.; Gaus, H.; Cummins, L.L.; Sasmor, H.; Griffey, R.H. Measurement of Macromolecular Binding Using Electrospray Mass Spectrometry. Determination of Dissociation Constants for Oligonucleotide: Serum Albumin Complexes. J.Am. Chem. Soc., 117, 10765-10766 (1995).

41. Lim, H.K.; Hsieh, Y.L.; Ganem, B.; Henion, J. Recognition of cell-wall peptide ligands by vancomycin group antibiotics: Studies using ion spray mass spectrom-etry. J. Mass Spectrom., 30, 708-714 (1995).

42. Gao, J.; Cheng, X.; Chen, R.; Sigal, G.B.; Bruce, J.E.; Schwartz, B.L.; Hofstadler, S.A.; Anderson, G.A.; Smith, R.D.; Whitesides, G.M. Screening derivatized peptide libraries for tight binding inhibitors to carbonic anhydrase II by electrospray ionization-mass spectrometry. J. Med. Chem., 39, 1949-1955 (1996).

43. Gao, Q.Y.; Cheng, X.H.; Smith, R.D.; Yang, C.F.; Goldberg, I.H. Binding specificity of post-activated neocarzinostatin chromophore drug-bulged DNA complex studied using electrospray ionization mass spectrometry. J. Mass Spectrom., 31, 31-36 (1996).

44. Wu, Q.; Cheng, X.; Hofstadler, S.A.; Smith, R.D. Specific metal-oligonucleotide binding studied by high resolution tandem mass spectrometry. J. Mass Spectrom., 31, 669-675 (1996).

45. Wu, Q.Y.; Gao, J.M.; Joseph-McCarthy, D.; Sigal, G.B.; Bruce, J.E.; Whitesides, G.M.; Smith, R.D. Carbonic anhydrase-inhibitor binding: From solution to the gas phase. J.Am. Chem. Soc., 119, 1157-1158 (1997).

46. Loo, J.A.; Hu, P.; McConnell, P.; Mueller, W.T. A study of Src SH2 domain protein-phosphopeptide binding interactions by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 8, 234-243 (1997).

47. Smith, R.D.; Bruce, J.E.; Wu, Q.; Lei, Q.P. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chem. Soc. Rev., 26, 191-202 (1997).

48. Ayed, A.; Krutchinsky, A.; Chernushevich, I.V.; Ens, W.; Duckworth, H.W.; Standing, K.G. Observation of non-covalent complexes of citrate synthase and NADH by ESI/TOF mass spectrometry. NATO ASI Ser, Ser. C, 510, 135-139 (1998).

49. Ayed, A.; Krutchinsky, A.N.; Ens, W.; Standing, K.G.; Duckworth, H.W. Quantitative evaluation of protein-protein and ligand-protein equilibria of a large allosteric enzyme by electrospray ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 12, 339-344 (1998).

50. Jorgensen, T.J.D.; Roepstorff, P. Direct Determination of Solution Binding Constants for Noncovalent Complexes between Bacterial Cell Wall Peptide Analogues and Vancomycin Group Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Chem, 70, 4427-4432 (1998).

51. Loo, J.A.; Sannes-Lowery, K.A.; Hu, P.; Mack, D.P.; Mei, H.-Y. Studying non-covalent protein-RNA interactions and drug binding by electrospray ionization mass spectrometry. In New Methods for the Study of Biomolecular Complexes; Ens, W., Standing, K. G., Chernushevich, I. V. Eds.; Kluwer: Dordrecht, 1998; pp 83-99.

52. Loo, J.A.; Sannes-Lowery, K.A. Studying noncovalent interactions by electrospray ionization mass spectrometry. In Mass Spectrom. Biol. Mater. (2nd Ed.); Larsen, B. S., McEwen, C. N. Eds.; Marcel Dekker, Inc.: New York, 1998; pp 345367.

53. Hofstadler, S.A.; Griffey, R.H. Analysis of noncovalent complexes of DNA and RNA by mass spectrometry. Chemistry Review, 101, 377-390 (2001).

54. Winzor, D.J.; Sawyer, W.H. Quantitative Characterization of Ligand Binding; Wiley-Liss: New York, 1995; 168 pp.

55. Cummins, L.L.; Chen, S.; Blyn, L.B.; Sonnes-Lowery, K.A.; Drader, J.J.; Griffey, R.H.; Hofstadler, S.A. Multitarget Affinity/Specificity Screening of Natural Products: Finding and Characterizing High Affinity Ligands from Complex Mixtures by using High Performance Mass Spectrometry. J. Nat. Prod., 66, 1186-1190 (2003).

56. DeJohngh, D.C.; Hribar, J.D.; Hanessian, S.; Woo, P.W.K. Mass Spectrometric Studies on Aminocyclitol Antibiotics. Journal of the American Chemical Society, 89, 3364-3365 (1967).

57. Curcuruto, O.; Kennedy, G.; Hamdan, M. Investigation of several aminoglycoside solutions containing one or more components by positive electrospray mass spectrometry. Org. Mass Spectrom., 29, 547-552 (1994).

58. Goolsby, B.J.; Brodbelt, J.S. Analysis of protonated and alkali metal cationized aminoglycoside antibiotics by collision-activated dissociation and infrared multiphoton dissociation in the quadrupole ion trap. J. Mass Spectrom., 35,1011-1024 (2000).

59. Drader, J.; Anderson, A.; Jiang, Y.; Hannis, J.; Hofstadler, S. manuscript inprepa-ration, (2005).

60. Marshall, A.G.; Verdun, F.R. Fourier Transforms in NMR, Optical, and Mass Spectromery; Elsevier: New York, 1990.

61. Marshall, A.G.; Grosshans, P.B. Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry - The Teenage Years. Anal. Chem., 63, A215-A229 (1991).

Was this article helpful?

0 0

Post a comment