Specific Heat Of Lipids

1 Danielli, J.F. and H. Davson, A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol. 1935; 5:

5 Allan, D., Mapping the lipid distribution in the membranes of BHK cells (mini-review). Mol. Membr. Biol. 1996; 13(2): 81-84.

495-508.

2 Singer, S.J. and G.L. Nicolson, The fluid mosaic model of the structure of cell membranes. Science 1972; 175(23): 720-731.

6 Tran, D., et al., Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc. Natl. Acad. Sci. USA 1987; 84(22): 7957-7961.

7 Gillooly, D.J., C. Raiborg, and H. Sten-mark, Phosphatidylinositol 3-phosphate is found in microdomains of early endo-

3 Devaux, P. F. and R. Morris, Transmembrane asymmetry and lateral domains in biological membranes. Traffic 2004; 5(4): 241-246.

4 Holthuis, J.C. and T.P. Levine, Lipid traffic: floppy drives and a superhighway.

somes. Histochem. Cell. Biol. 2003; 120(6): 445-453.

8 Fratti, R.A., et al., Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. 2004; 167(6): 1087-1098.

9 Brown, D.A. and E. London, Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 1998; 14: 111-136.

10 Lichtenberg, D., F.M. Goni, and H. Heerklotz, Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 2005; 30(8): 430-436.

11 Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature 1997; 387(6633): 569-572.

12 Munro, S., Lipid rafts: elusive or illusive? Cell 2003; 115(4): 377-388.

13 Edidin, M., The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 2003; 32: 257-283.

14 Simons, K. and W. L. Vaz, Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 2004; 33: 269-295.

15 Ipsen, J. H., et al., Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 1987; 905(1): 162-172.

16 Ipsen, J.H., O.G. Mouritsen, and M.J. Zuckermann, Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys. J. 1989; 56(4): 661-667.

17 Miao, L., et al., From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys. J. 2002; 82(3): 1429-1444.

18 Xu, X., et al., Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingo-myelin, cerebrosides, and ceramide. J. Biol. Chem. 2001; 276(36): 33 540-33546.

19 Leventis, R. and J.R. Silvius, Use of cyclo-dextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys. J. 2001; 81(4): 2257-2267.

20 Dietrich, C., et al., Lipid rafts reconstituted in model membranes. Biophys. J. 2001; 80(3): 1417-1428.

21 de Almeida, R.F., A. Fedorov, and M. Prieto, Sphingomyelin/phosphatidylcho-line/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 2003; 85(4): 2406-2416.

22 Veatch, S.L. and S.L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 2003; 85(5): 3074-3083.

23 Silvius, J.R., Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. Biophys. J. 2003; 85(2): 1034-1045.

24 McConnell, H.M. and M. Vrljic, Liquidliquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 2003; 32: 469-492.

25 Wang, T.Y. and J.R. Silvius, Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys. J. 2001; 81(5): 2762-2773.

26 Huang, J. and G.W. Feigenson, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 1999; 76(4): 2142-2157.

27 Schroeder, R., E. London, and D. Brown, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 1994; 91(25): 12130-12134.

28 Kahya, N., D.A. Brown, and P. Schwille, Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 2005; 44(20): 7479-7489.

29 Dietrich, C., et al., Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 2001; 98(19): 10642-10647.

30 Benting, J., et al., Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro. FEBS Lett. 1999; 462(1-2): 47-50.

31 Wang, T.Y., R. Leventis, and J. R. Silvius, Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry 2001; 40(43): 13031-13040.

32 Mcintosh, T.J., A. Vidal, and S.A. Simon, Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. Biophys. J. 2003; 85(3): 1656-1666.

33 Estronca, L.M., et al., Solubility of amphi-philes in membranes: influence of phase properties and amphiphile head group. Biochem. Biophys. Res. Commun. 2002; 296(3): 596-603.

34 Spiegel, S., et al., Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol. 1984; 99(5): 1575-1581.

35 Harder, T., et al., Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 1998; 141(4): 929-942.

36 Gidwani, A., D. Holowka, and B. Baird, Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry 2001; 40(41): 12422-12429.

37 Gaus, K., et al., Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. USA 2003; 100(26): 15554-15559.

38 Pralle, A., et al., Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 2000; 148(5): 997-1008.

39 Prior, I.A., et al., Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 2003; 160(2): 165-170.

40 Zacharias, D.A., et al., Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 2002; 296(5569): 913-916.

41 Lommerse, P.H., et al., Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys. J. 2004; 86(1 Pt 1): 609-616.

42 Kenworthy, A. K. and M. Edidin, Distribution of a glycosylphosphatidylinositol-an-chored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence reso nance energy transfer. J. Cell Biol. 1998; 142(1): 69-84.

43 Kenworthy, A. K., N. Petranova, and M. Edidin, High-resolution FRET microscopy of cholera toxin B-subunit and GPI-an-chored proteins in cell plasma membranes. Mol. Biol. Cell 2000; 11(5): 1645-1655.

44 Glebov, O.O. and B.J. Nichols, Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat. Cell Biol. 2004; 6(3): 238-243.

45 Fra, A.M., et al., Detergent-insoluble gly-colipid microdomains in lymphocytes in the absence of caveolae. J. Biol. Chem. 1994; 269(49): 30745-30748.

46 Varma, R. and S. Mayor, GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998; 394(6695): 798-801.

47 Sharma, P., et al., Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 2004; 116(4): 577-589.

48 Kusumi, A., I. Koyama-Honda, and K. Suzuki, Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 2004; 5(4): 213-230.

49 Anderson, R.G. and K. Jacobson, A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 2002; 296(5574): 1821-1825.

50 Dietrich, C., et al., Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 2002; 82(1 Pt 1): 274-284.

51 Schutz, G. J., et al., Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 2000; 19(5): 892-901.

52 Fujiwara, T., et al., Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 2002; 157(6): 1071-1081.

53 Lafont, F., et al., Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 1998; 142(6): 1413-1427.

54 Cheong, K. H., et al., VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc. Natl. Acad. Sci. USA 1999; 96(11): 6241-6248.

55 Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 2000; 1(1): 31-39.

56 Gri, G., et al., The inner side of T cell lipid rafts. Immunol. Lett. 2004; 94(3): 247-252.

57 Pyenta, P.S., D. Holowka, and B. Baird, Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components. Biophys. J. 2001; 80(5): 2120-2132.

58 Harder, T. and K. R. Engelhardt, Membrane domains in lymphocytes - from lipid rafts to protein scaffolds. Traffic 2004; 5(4): 265-275.

59 Kahya, N., et al., Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 2003; 278(30): 28109-28115.

60 Pierce, S.K., Lipid rafts and B-cell activation. Nat. Rev. Immunol. 2002; 2(2): 96-105.

61 Holowka, D., et al., Lipid segregation and IgE receptor signaling: A decade of progress. Biochim. Biophys. Acta 2005; in press.

62 Horejsi, V., Lipid rafts and their roles in T-cell activation. Microbes Infect. 2005; 7(2): 310-316.

63 He, H.T., A. Lellouch, and D. Marguet, Lipid rafts and the initiation of T cell receptor signaling. Semin. Immunol. 2005; 17(1): 23-33.

64 Douglass, A. D. and R. D. Vale, Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 2005; 121(6): 937-950.

65 Magee, A. I., J. Adler, and I. Parmryd, Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways. J. Cell Sci. 2005; 118(Pt 14): 3141-3151.

66 Veatch, S.L. and S.L. Keller, Seeing spots: Complex phase behavior in simple membranes. Biochim. Biophys. Acta 2005; in press.

67 Hammond, A.T., et al., Crosslinking a lipid raft component triggers liquid or-dered-liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. Sci. USA 2005; 102(18): 6320-6325.

68 Herzlinger, D.A. and G.K. Ojakian, Studies on the development and maintenance of epithelial cell surface polarity with monoclonal antibodies. J. Cell Biol. 1984; 98(5): 1777-1787.

69 Balcarova-Stander, J., et al., Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. EMBO J. 1984; 3(11): 2687-2694.

70 Simons, K. and G. van Meer, Lipid sorting in epithelial cells. Biochemistry 1988; 27(17): 6197-6202.

71 Danielsen, E. M. and G. H. Hansen, Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochim. Biophys. Acta 2003; 1617(1-2): 1-9.

72 Barenholz, Y. and T. E. Thompson, Sphin-gomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 1980; 604(2): 129-158.

73 Meder, D., et al., Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl. Acad. Sci USA, in press.

74 Kenworthy, A. K., et al., Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 2004; 165(5): 735-746.

75 Feder, T.J., et al., Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 1996; 70(6): 2767-2773.

76 Bouchaud, J. P. and A. Georges, Comment on "Stochastic pathway to anomalous diffusion". Phys. Rev. A 1990; 41(2): 1156-1157.

77 Vaz, W. L. and P. F. Almeida, Phase topology and percolation in multi-phase lipid bilayers: is the biological membrane a domain mosaic? Curr. Opin. Struct. Biol. 1993; 3: 482-488.

78 Almeida, P. F., W. L. Vaz, and T. E. Thompson, Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bi-layer. Biochemistry 1992; 31(31): 7198-7210.

79 Coelho, F. P., W. L. Vaz, and E. Melo, Phase topology and percolation in two-component lipid bilayers: a Monte Carlo approach. Biophys. J. 1997; 72(4): 1501-1511.

80 Abreu, M. S., M. J. Moreno, and W. L. Vaz, Kinetics and thermodynamics of association of a phospholipid derivative with lipid bilayers in liquid-disordered and liquid-ordered phases. Biophys. J. 2004; 87(1): 353-365.

81 Shogomori, H., et al., Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. J. Biol. Chem. 2005; 280(19): 18 931-18942.

82 Palade, G.E., Fine structure of blood capillaries. J. Appl. Physiol. 1953; 24: 1424.

83 Bruns, R.R. and G.E. Palade, Studies on blood capillaries. I. General organization of blood capillaries in muscle. J. Cell Biol. 1968; 37(2): 244-276.

84 Yamada, E., The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1955; 1(5): 445458.

85 Peters, K.R., W.W. Carley, and G.E. Palade, Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol. 1985l 101(6): 2233-2238.

86 Rothberg, K.G., et al., Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68(4): 673-682.

87 Dupree, P., et al., Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 1993; 12(4): 1597-1605.

88 Scherer, P.E., et al., Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an iso-form-specific monoclonal antibody probe. J. Biol. Chem. 1995; 270(27): 16395-16401.

89 Scherer, P.E., et al., Cell-type and tissue-specific expression of caveolin-2. Caveo-lins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 1997; 272(46): 29 337-29346.

90 Tang, Z., et al., Molecular cloning of cav-eolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 1996; 271(4): 2255-2261.

91 Kurzchalia, T.V., et al., VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 1992; 118(5): 1003-1014.

92 Monier, S., et al., VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 1995; 6(7): 911-927.

93 Sargiacomo, M., et al., Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 1995; 92(20): 9407-9411.

94 Luetterforst, R., et al., Molecular characterization of caveolin association with the Golgi complex: identification of a cis-Golgi targeting domain in the caveolin molecule. J. Cell Biol. 1999; 145(7): 1443-1459.

95 Machleidt, T., et al., Multiple domains in caveolin-1 control its intracellular traffic. J. Cell Biol. 2000; 148(1): 17-28.

96 Scherer, P.E., et al., Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 1996; 93(1): 131-135.

97 Mora, R., et al., Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J. Biol. Chem. 1999; 274(36): 25708-25717.

98 Parolini, I., et al., Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J. Biol. Chem. 1999; 274(36): 25718-25725.

99 Fra, A.M., et al., De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 1995; 92(19): 8655-8659.

100 Pelkmans, L. and M. Zerial, Kinase-regu-lated quantal assemblies and kiss-and-run recycling of caveolae. Nature 2005; 436(7047): 128-133.

101 Fernandez, I., et al., Mechanism of caveo-lin filament assembly. Proc. Natl. Acad. Sci. USA 2002; 99(17): 11193-11198.

102 Fra, A.M., et al., A photo-reactive derivative of ganglioside GM1 specifically crosslinks VIP21-caveolin on the cell surface. FEBS Lett. 1995; 375(1-2): 11-14.

103 Murata, M., et al., VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 1995; 92(22): 10339-10343.

104 Lisanti, M.P., et al., Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994; 4(7): 231-235.

105 Brown, D.A. and J.K. Rose, Sorting of GPI-anchored proteins to glycolipid-en-riched membrane subdomains during transport to the apical cell surface. Cell 1992; 68(3): 533-544.

106 Sargiacomo, M., et al., Signal transducing molecules and glycosyl-phosphatidylinosi-tol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 1993; 122(4): 789-807.

107 Smart, E.J., et al., A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 1995; 92(22): 10104-10108.

108 Bacia, K., P. Schwille, and T. Kurzchalia, Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 2005; 102(9): 3272-3277.

109 Rodriguez-Boulan, E., G. Kreitzer, and A. Musch, Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell. Biol. 2005; 6(3): 233-247.

110 Mellman, I., Membranes and sorting. Curr. Opin. Cell Biol. 1996; 8(4): 497-498.

111 Salama, N. R. and R.W. Schekman, The role of coat proteins in the biosynthesis of secretory proteins. Curr. Opin. Cell Biol. 1995; 7(4): 536-543.

112 Kreis, T. E., M. Lowe, and R. Pepperkok, COPs regulating membrane traffic. Annu. Rev. Cell. Dev. Biol. 1995; 11: 677-706.

113 Schuck, S. and K. Simons, Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 2004; 117(Pt 25): 5955-5964.

114 Lipowsky, R., Domain-induced budding of fluid membranes. Biophys. J. 1993; 64: 1133-1138.

115 van Meer, G., et al., Sorting of sphingolip-ids in epithelial (Madin-Darby canine kidney) cells. J. Cell Biol. 1987; 105(4): 1623-1635.

116 Fuller, S. D. and K. Simons, Transferrin receptor polarity and recycling accuracy in "tight" and "leaky" strains of Madin-Darby canine kidney cells. J. Cell Biol. 1986; 103(5): 1767-1779.

117 Pfeiffer, S., S.D. Fuller, and K. Simons, Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kid ney cells. J. Cell Biol. 1985; 101(2): 470-476.

118 Folsch, H., et al., A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 1999; 99(2): 189-198.

119 Paladino, S., et al., Protein oligomeriza-tion modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 2004; 167(4): 699-709.

120 Delacour, D., et al., Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol. 2005; 169(3): 491-501.

121 Parton, R.G., B. Joggerst, and K. Simons, Regulated internalization of caveolae. J. Cell Biol. 1994; 127(5): 1199-1215.

122 Pelkmans, L., J. Kartenbeck, and A. Hele-nius, Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell. Biol. 2001; 3(5): 473-483.

123 Kirkham, M., et al., Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol. 2005; 168(3): 465-476.

124 Damm, E. M., et al., Clathrin- and caveo-lin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveo-lae. J. Cell Biol. 2005; 168(3): 477-488.

125 Tsai, B., et al., Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 2003; 22(17): 4346-4355.

126 Le, P.U., et al., Caveolin-1 is a negative regulator of caveolae-mediated endocyto-sis to the endoplasmic reticulum. J. Biol. Chem. 2002; 277(5): 3371-3379.

127 Pelkmans, L., et al., Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004; 118(6): 767-780.

128 van Deurs, B., et al., Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 2003; 13(2): 92-100.

129 Lafont, F., et al., Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc. Natl. Acad. Sci. USA 1999; 96(7): 3734-3738.

130 Pombo, I., J. Rivera, and U. Blank, Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing

SNARE complexes. FEBS Lett. 2003; 550(1-3): 144-148.

131 Low, S.H., et al., Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 1996; 7(12): 2007-2018.

132 Jacob, R. and H.Y. Naim, Apical membrane proteins are transported in distinct vesicular carriers. Curr. Biol. 2001; 11(18): 1444-1450.

133 Harder, T. and M. Kuhn, Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 2000; 151(2): 199-208.

Was this article helpful?

0 0
Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


Post a comment