References

Natural Cholesterol Guide

Lower Cholesterol By Scott Davis

Get Instant Access

1 Hooper NM. Detergent-insoluble glycos-phingolipid/cholesterol-rich membrane do mains, lipid rafts and caveolae (review). Mol. Membr. Biol. 16: 145-156, 1999.

2 Iwabuchi K, Handa K, Hakomori S. Separation of glycosphingolipid-enriched microdomains from caveolar membrane characterized by presence of caveolin. Methods Enzymol. 312: 488-494, 2000.

3 Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19: 7289-7304, 1999.

4 Rothberg KG, Heuser JE, Donzell WC, Ying Y, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane coats. Cell 68: 673-682, 1992.

5 Rothberg KG, Ying Y, Kamen BA, Anderson RGW. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahy-drofolate. J. Cell Biol. 111: 2931-2938, 1990.

6 Smart EJ, Ying YS, Conrad PA, Anderson RG. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127: 1185-1197, 1994.

7 Singh RD, Puri V, Valiyaveettil JT, Marks DL, Bittman R, Pagano RE. Selective cav-eolin-1-dependent endocytosis of glycos-phingolipids. Mol. Biol. Cell 14: 3254-3265, 2003.

8 Abrami L, Fivaz M, Kobayashi T, Kinoshita T, Parton RG, van der Goot FG. Cross-talk between caveolae and glycosylphosphatidy-linositol-rich domains. J. Biol. Chem. 276: 30729-30736, 2001.

9 Smart EJ, Anderson RG. Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353: 131-139, 2002.

10 Uittenbogaard A, Everson WV, Matveev SV, Smart EJ. Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex. J. Biol. Chem. 277: 4925-4931, 2002.

11 Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem. 275: 11278-11283, 2000.

12 Machleidt T, Li WP, Liu P, Anderson RG. Multiple domains in caveolin-1 control its intracellular traffic. J. Cell Biol. 148: 17-28, 2000.

13 Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ. Interaction between caveolin-1 and the reductase domain of en dothelial nitric-oxide synthase. Consequences for catalysis. J. Biol. Chem. 273: 22267-22271, 1998.

14 Gong MC, Wilson ME, Kelly T, Su W, Dressman J, Kincer JF, Matveev S, Guo L, Guerin TM, Li X-A, Zhu W, Uittenbogaard A, Smart EJ. HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J. Clin. Invest. 111: 1579-1587,

2003.

15 Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA. Caveolin-1 interacts directly with dynamin-2. J. Mol. Biol. 348: 491-501, 2005.

16 Smart EJ, Ying YS, Mineo C, Anderson RG. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92: 10104-10108, 1995.

17 Schnitzer JE, McIntosh DP, Dvorak AM, Liu J, Oh P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269: 1435-1439, 1995.

18 Robinson JM, Vandre DD. Antigen retrieval in cells and tissues: enhancement with sodium dodecyl sulfate. Histochem. Cell. Biol. 116: 119-130, 2001.

19 Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell 16: 2091-2105, 2005.

20 Fra AM, Williamson E, Simons K, Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 92: 8655-8659, 1995.

21 Sowa G, Pypaert M, Fulton D, Sessa WC. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-de-pendent caveolae formation. Proc. Natl. Acad. Sci. USA 100: 6511-6516, 2003.

22 Corvera S, DiBonaventura C, Shpetner HS. Cell confluence-dependent remodeling of endothelial membranes mediated by cholesterol. J. Biol. Chem. 275: 31414-31421, 2000.

23 Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cyto-chem. 49: 419-432, 2001.

24 Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuo-lar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 59: 100-115, 1996.

25 Feng D, Nagy JA, Dvorak HF, Dvorak AM. Ultrastructural studies define soluble mac-romolecular, particulate, and cellular trans-endothelial cell pathways in venules, lymphatic vessels, and tumor-associated mi-crovessels in man and animals. Microsc. Res. Tech. 57: 289-326, 2002.

26 Bauer PM, Yu J, Chen Y, Hickey R, Ber-natchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV, Sessa WC. Endothe-lial-specific expression of caveolin-1 impairs microvascular permeability and an-giogenesis. Proc. Natl. Acad. Sci. USA 102: 204-209, 2005.

27 Stan RV. Structure and function of endothelial caveolae. Microsc. Res. Tech. 57: 350-364, 2002.

28 Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodri-guez-Boulan E. Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J. Biol. Chem. 274: 25708-25717, 1999.

29 Parolini I, Sargiacomo M, Galbiati F, Rizzo G, Grignani F, Engelman JA, Okamoto T, Ikezu T, Scherer PE, Mora R, Rodriguez-Boulan E, Peschle C, Lisanti MP. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J. Biol. Chem. 274: 25718-25725, 1999.

30 Scherer PE, Lewis RY, Volonte D, Engel-man JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP. Celltype and tissue-specific expression of cav-eolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272: 29337-29346, 1997.

31 Scherer PE, Okamoto T, Chun M, Nishi-moto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 93: 131-135, 1996.

32 Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J. Cell Biol. 152: 1071-1078, 2001.

33 Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol. 152: 1057-1070, 2001.

34 Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H, Christ GJ, Edelmann W, Lisanti MP. Caveolin-2 deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Biol. Cell 22: 2329-2344, 2002.

35 Frank PG, Pedraza A, Cohen DE, Lisanti MP. Adenovirus-mediated expression of caveolin-1 in mouse liver increases plasma high-density lipoprotein levels. Biochemistry 40: 10892-10900, 2001.

36 Bouras T, Lisanti MP, Pestell RG. Caveolin-1 in breast cancer. Cancer Biol. Ther. 3: 931-941, 2004.

37 Yang G, Truong LD, Timme TL, Ren C, Wheeler TM, Park SH, Nasu Y, Bangma CH, Kattan MW, Scardino PT, Thompson TC. Elevated expression of caveolin is associated with prostate and breast cancer. Clin. Cancer Res. 4: 1873-1880, 1998.

38 Mouraviev V, Li L, Tahir SA, Yang G, Timme TM, Goltsov A, Ren C, Satoh T, Wheeler TM, Ittmann MM, Miles BJ, Amato RJ, Kadmon D, Thompson TC. The role of caveolin-1 in androgen insensitive prostate cancer. J. Urol. 168: 1589-1596, 2002.

39 Pramudji C, Shimura S, Ebara S, Yang G, Wang J, Ren C, Yuan Y, Tahir SA, Timme TL, Thompson TC. In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Clin. Cancer Res. 7: 4272-4279, 2001.

40 Thompson TC, Timme TL, Li L, Goltsov A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis 4: 233-237, 1999.

41 Montesano R, Mossaz A, Vassalli P, Orci L. Specialization of the macrophage plasma membrane at sites of interaction with opsonized erythrocytes. J. Cell Biol. 96: 1227-1233, 1983.

42 Montesano R, Vassalli P, Orci L. Structural heterogeneity of endocytic membranes in macrophages as revealed by the cholesterol probe, filipin. J. Cell Sci. 51: 95-107, 1981.

43 Orci L, Montesano R, Meda P, Malaisse-Lagae F, Brown D, Perrelet A, Vassalli P. Heterogeneous distribution of filipin-cho-lesterol complexes across the cisternae of the Golgi apparatus. Proc. Natl. Acad. Sci. USA 78: 293-297, 1981.

44 Conrad PA, Smart EJ, Ying Y, Anderson RWG, Bloom GS. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J. Cell Biol. 131: 1421-1433, 1995.

45 Robenek MJ, Schlattmann K, Zimmer KP, Plenz G, Troyer D, Robenek H. Cholesterol transporter caveolin-1 transits the lipid bilayer during intracellular cycling. FASEB J. 17: 1940-1942, 2003.

46 Joliot A, Maizel A, Rosenberg D, Trem-bleau A, Dupas S, Volovitch M, Prochiantz A. Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr. Biol. 8: 856-863, 1998.

47 Joliot A, Trembleau A, Raposo G, Calvet S, Volovitch M, Prochiantz A. Association of Engrailed homeoproteins with vesicles presenting caveolae-like properties. Development 124: 1865-1875, 1997.

48 Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer KP, Troyer D, Robenek H. Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J. 18: 866-868, 2004.

49 Smart EJ, Ying Y, Donzell WC, Anderson RG. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271: 29427-29435, 1996.

50 Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock pro-tein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273: 6525-6532, 1998.

51 King WJ, Greene GL. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 307: 745-747, 1984.

52 Welshons WV, Lieberman ME, Gorski J. Nuclear localization of unoccupied oestro gen receptors. Nature 307: 747-749, 1984.

53 Chambliss KL, Shaul PW. Rapid activation of endothelial NO synthase by estrogen: evidence for a steroid receptor fast-action complex (SRFC) in caveolae. Steroids 67: 413-419, 2002.

54 Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG, Shaul PW. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 87: E44-E52, 2000.

55 Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, Jo I. Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in cav-eolae. Biochem. Biophys. Res. Commun. 263: 257-262, 1999.

56 Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 al-pha,25(OH)2-vitamin D3 in vivo and in vitro. Mol. Endocrinol. 18: 2660-2671, 2004.

57 Norman AW, Olivera CJ, Barreto Silva FR, and Bishop JE. A specific binding protein/ receptor for 1alpha,25-dihydroxyvitamin D(3) is present in an intestinal caveolae membrane fraction. Biochem. Biophys. Res. Commun. 298: 414-419, 2002.

58 Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271: 6518-6522, 1996.

59 Galbiati F, Volonte D, Meani D, Milligan G, Lublin DM, Lisanti MP, Parenti M. The dually acylated NH2-terminal domain of gi1alpha is sufficient to target a green fluorescent protein reporter to caveolin-en-riched plasma membrane domains. Palmi-toylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo. J. Biol. Chem. 274: 5843-5850, 1999.

60 Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126: 353-363, 1994.

61 Uittenbogaard A, Smart EJ. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem. 275: 25595-25599, 2000.

62 Liang JS, Distler O, Cooper DA, Jamil H, Deckelbaum RJ, Ginsberg HN, Sturley SL. HIV protease inhibitors protect apolipo-protein B from degradation by the protea-some: A potential mechanism for protease inhibitor-induced hyperlipidemia. Nature Med. 7: 1327-1331, 2001.

63 Wang A, Johnson CA, Jones Y, Ellisman MH, Dennis EA. Subcellular localization and PKC-dependent regulation of the human lysophospholipase A/acyl-protein thioesterase in WISH cells. Biochim. Bio-phys. Acta 1484: 207-214, 2000.

64 Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108: 785-791, 2001.

65 Kincer JF, Uittenbogaard A, Dressman J, Guerin TM, Febbraio M, Guo L, Smart EJ. Hypercholesterolemia promotes a CD36-dependent and endothelial nitric oxide synthase-mediated vascular dysfunction. J. Biol. Chem. 277: 23525-23533, 2002.

66 Bastie CC, Hajri T, Drover VA, Grimaldi PA, Abumrad NA. CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness. Diabetes 53: 2209-2216, 2004.

67 Nozaki S, Tanaka T, Yamashita S, Sohmiya K, Yoshizumi T, Okamoto F, Kitaura Y, Ko-take C, Nishida H, Nakata A, Nakagawa T, Matsumoto K, Kameda-Takemura K, Tado-koro S, Kurata Y, Tomiyama Y, Kawamura K, Matsuzawa Y. CD36 mediates long-chain fatty acid transport in human myocardium: complete myocardial accumulation defect of radiolabeled long-chain fatty acid analog in subjects with CD36 deficiency. Mol. Cell. Biochem. 192: 129-135, 1999.

68 Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271: 518-520, 1996.

69 Acton SL, Scherer PE, Lodish HF, Krieger M. Expression cloning of SR-BI, a CD36-

related class B scavenger receptor. J. Biol. Chem. 269: 21003-21009, 1994.

70 Babitt J, Trigatti B, Rigotti A, Smart EJ, Anderson RG, Xu S, Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and coloca-lizes with plasma membrane caveolae.

71 Connelly MA, Klein SM, Azhar S, Abumrad NA, Williams DL. Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J. Biol. Chem. 274: 41-47, 1999.

72 Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr. Opin. Lipidol. 11: 123-131, 2000.

73 Azhar S, Leers-Sucheta S, Reaven E. Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and 'selective' pathway connection. Front. Biosci. 8: 998-1029, 2003.

74 Krieger M. Charting the fate of the 'good cholesterol': identification and characterization of the high-density lipoprotein receptor SR-BI. Annu. Rev. Biochem. 68: 523-558, 1999.

75 Varban ML, Rinninger F, Wang N, Fair-child-Huntress V, Dunmore JH, Fang Q, Gosselin ML, Dixon KL, Deeds JD, Acton SL, Tall AR, Huszar D. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc. Natl. Acad. Sci. USA 95: 4619-4624, 1998.

76 Li XA, Guo L, Dressman JL, Asmis R, Smart EJ. A novel ligand-independent apoptotic pathway induced by scavenger receptor class B, type I and suppressed by endothelial nitric-oxide synthase and high density lipoprotein. J. Biol. Chem. 280: 19087-19096, 2005.

77 Chikani G, Zhu W, Smart EJ. Lipids: potential regulators of nitric oxide generation. Am. J. Physiol. Endocrinol. Metab. 287: E386-E389, 2004.

78 Everson WV, Smart EJ. Influence of caveo-lin, cholesterol, and lipoproteins on nitric oxide synthase. implications for vascular disease. Trends Cardiovasc. Med. 11: 246-250, 2001.

79 Lungu AO, Jin ZG, Yamawaki H, Tani-moto T, Wong C, Berk BC. Cyclosporin A inhibits flow-mediated activation of endothelial nitric oxide synthase via altering cholesterol content in caveolae. J. Biol. Chem. e-pub, 2004.

80 Smart EJ, deRose RA, Farber SA. Annexin 2-caveolin 1 complex is a target of ezeti-mibe and regulates intestinal cholesterol transport. Proc. Natl. Acad. Sci. USA 101: 3450-3455, 2004.

81 Davis HR, Jr., Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG, Detmers PA, Graziano MP, Altmann SW. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279: 33586-33592, 2004.

82 Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona

JH, Davis HR, Jr., Dean DC, Detmers PA, Graziano MP, Hughes M, Macintyre DE, Ogawa A, O'Neill K A, Iyer SP, Shevell DE, Smith MM, Tang YS, Makarewicz AM, Ujjainwalla F, Altmann SW, Chapman KT, Thornberry NA. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA 102: 8132-8137, 2005.

83 Garver WS, Hossain GS, Winscott MM, and Heidenreich RA. The Npc1 mutation causes an altered expression of caveolin-1, annexin II and protein kinases and phos-phorylation of caveolin-1 and annexin II in murine livers. Biochim. Biophys. Acta 1453: 193-206, 1999.

84 Zhou M, Parr RD, Petrescu AD, Payne HR, Atshaves BP, Kier AB, Ball JM, Schroeder F. Sterol carrier protein-2 directly interacts with caveolin-1 in vitro and in vivo. Biochemistry 43: 7288-7306, 2004.

Was this article helpful?

0 0
Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook


Post a comment