Type 2 Diabetes Defeated

Natural Cure for Diabetes

Get Instant Access

1 Glenney, J. R., and D. Soppet (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyro-sine in Rous sarcoma virus-transformed fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10517-10521.

2 Scherer, P. E., Tang, Z., Chun, M., Sargia-como, M., Lodish, H. F., and Lisanti,

M. P. (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. J. Biol. Chem. 270, 16395-16401.

3 Scherer, P. E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F., and Lisanti, M. P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 93, 131-135.

4 Tang, Z., Scherer, P. E., Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishi-moto, I., Lodish, H. F., and Lisanti, M. P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255-2261.

5 Scheiffele, P., Verkade, Fra, M., Virta, Simons, and Ikonen (1998). Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140, 795-806.

6 Fra, A. M., Williamson, E., Simons, K., and Parton, R. G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 92, 8655-8659.

7 Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F. C., Schedl, A., Haller, H., and Kurzchalia, T. V. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 9, 2449-2452.

8 Razani, B., Engelman, J. A., Wang, X. B., Schubert, W., Zhang, X. L., Marks, C. B., Macaluso, F., Russell, R. G., Li, M., Pes-tell, R. G., Di Vizio, D., Hou, H., Jr., Kneitz, B., Lagaud, G., Christ, G. J., Edelmann, W., and Lisanti, M. P. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121-38138.

9 Kurzchalia, T. V., and Parton, R. G. (1999). Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424-431.

10 Li, S., Couet, J., and Lisanti, M.P. (1996). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271, 29182-29190.

11 Garcia-Cardena, G., Fan, R., Stern, D. F., Liu, J., and Sessa, W.C. (1996). Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271, 27237-27240.

12 Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M.P. (1998). Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J. Biol. Chem. 273, 5419-5422.

13 Oh, P., and Schnitzer, J.E. (2001). Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveo-lin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol. Biol. Cell 12, 685-698.

14 Mastick, C. C., Brady, M. J., and Saltiel, A. R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129, 1523-1531.

15 Mastick, C. C., and Saltiel, A. R. (1997). Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J. Biol. Chem. 272, 2070620714.

16 Lee, H., Volonte, D., Galbiati, F., Iyengar, P., Lublin, D. M., Bregman, D. B., Wilson, M. T., Campos-Gonzalez, R., Bou-zahzah, B., Pestell, R. G., Scherer, P. E., and Lisanti, M.P. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol. 14, 1750-1775.

17 Kim, Y. N., Wiepz, G. J., Guadarrama, A. G., and Bertics, P.J. (2000). Epidermal growth factor-stimulated tyrosine phos-phorylation of caveolin-1. Enhanced cav-eolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J. Biol. Chem. 275, 7481-7491.

18 Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P., Ma, Y., Griendling, K., and RW, A. (2001). Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: Role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J. Biol. Chem. 276, 48269-48275.

19 Muller, G., Jung, C., Wied, S., Welte, S., and Frick, W. (2001). Insulin-mimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components. Biochemistry 40, 14603-14620.

20 Newcomb, L. F., and Mastick, C. C. (2002). Src family kinase-dependent phosphorylation of a 29-kDa caveolin-associ-ated protein. Biochem. Biophys. Res. Commun. 290, 1447-1453.

(2002). Caveolin-1 phosphorylation in human squamous and epidermoid carcinoma cells: dependence on ErbB1 expression and Src activation. Exp. Cell Res. 280, 134-147.

(2003). Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactiva tion and caveolin-1 interaction. Am. J. Physiol. Renal Physiol. 284, F303-F312.

23 Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., and Beli-veau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol. Biol. Cell 14, 334-347.

C.C. (2004). Oxidative stress activates both Src-kinases and their negative regulator Csk and induces phosphorylation of two targeting proteins for Csk: caveolin-1 and paxillin. Exp. Cell Res. 294, 159-171.

25 Podar, K., Shringarpure, R., Tai, Y. T., Si-moncini, M., Sattler, M., Ishitsuka, K., Richardson, P. G., Hideshima, T., Chauhan,

D., and Anderson, K.C. (2004). Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezo-mib. Cancer Res. 64, 7500-7506.

26 Fielding, P. E., Chau, P., Liu, D., Spencer, T. A., and Fielding, C.J. (2004). Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry 43, 2578-2586.

27 Colonna, C., and Podesta, E.J. (2005). ACTH-induced caveolin-1 tyrosine phos-phorylation is related to podosome assembly in Y1 adrenal cells. Exp. Cell Res. 304, 432-442.

28 Aoki, T., Nomura, R., and Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp. Cell Res. 253, 629-636.

29 Volonte, D., Galbiati, F., Pestell, R. G., and Lisanti, M.P. (2001). Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the ac-tin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem. 276, 8094-8103.

30 Rizzo, V., Morton, C., DePaola, N., Schnitzer, J. E., and Davies, P.F. (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart Circ. Physiol. 285, H1720-H1729.

31 Sanguinetti, A. R., Cao, H., and Corley Mastick, C. (2003). Fyn is required for ox-

idative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochem. J. 376, 159-168.

(2003). c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal. 15, 289-298.

33 Navakauskiene, R., Treigyte, G., Gineitis, A., and Magnusson, K.E. (2004). Identification of apoptotic tyrosine-phosphoryla-ted proteins after etoposide or retinoic acid treatment. Proteomics 4, 1029-1041.

34 Radel, C., and Rizzo, V. (2005). Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am. J. Physiol. Heart Circ. Physiol. 288, H936-H945.

35 Brown, G., Rixon, H. W., and Sugrue, R.J. (2002). Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphoryla-ted caveolin-1. J. Gen. Virol. 83, 1841-1850.

36 Minshall, R. D., Sessa, W. C., Stan, R. V., Anderson, R. G., and Malik, A. B. (2003). Caveolin regulation of endothelial function. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L1179-L1183.

37 Shajahan, A. N., Tiruppathi, C., Smrcka, A. V., Malik, A. B., and Minshall, R.D.

(2004). Gbetagamma activation of Src induces caveolae-mediated endocytosis in endothelial cells. J. Biol. Chem. 279, 48055-48062.

38 Sargiacomo, M., Scherer, P. E., Tang, Z. L., Casanova, J. E., and Lisanti, M.P. (1994). In vitro phosphorylation of caveo-lin-rich membrane domains: identification of an associated serine kinase activity as a casein kinase Il-like enzyme. Onco-gene 9, 2589-2595.

39 Nomura, R., and Fujimoto, T. (1999). Ty-rosine-phosphorylated caveolin-1: immu-nolocalization and molecular characterization. Mol. Biol. Cell 10, 975-986.

40 Lee, H., Park, D. S., Wang, X. B., Scherer, P. E., Schwartz, P. E., and Lisanti, M.P. (2002). Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveo-lin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J. Biol. Chem. 277, 34556-34567.

41 Kiss, A. L., Botos, E., Turi, A., and Mullner, N. (2004). Ocadaic acid treatment causes tyrosine phosphorylation of caveolin-2 and induces internalization of caveolae in rat peritoneal macrophages. Micron 35, 707-715.

42 Wang, X. B., Lee, H., Capozza, F., Mar-mon, S., Sotgia, F., Brooks, J. W., Campos-Gonzalez, R., and Lisanti, M.P. (2004). Tyrosine phosphorylation of caveolin-2 at residue 27: differences in the spatial and temporal behavior of phos-pho-Cav-2 (pY19 and pY27). Biochemistry 43, 13694-13706.

43 Zaas, D. W., Duncan, M. J., Li, G., Wright, J. R., and Abraham, S.N. (2005). Pseudomonas invasion of type I pneumo-cytes is dependent on the expression and phosphorylation of caveolin-2. J. Biol. Chem. 280, 4864-4872.

44 Robinson, L. J., Pang, S., Harris, D. S., Heuser, J., and James, D.E. (1992). Translocation of glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP, insulin, and GTPgS and localization of GLUT4 to cla-thrin lattices. J. Biol. Chem. 117, 1181-1196.

45 Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C., and Lod-ish, H.F. (1994). Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 127, 1233-1243.

46 Kandror, K. V., Stephens, J. M., and Pilch, P. F. (1995). Expression and compart-mentalization of caveolin in adipose cells: coordinate regulation with and structural segregation from GLUT4. J. Cell Biol. 129, 999-1006.

47 Razani, B., Combs, T. P., Wang, X. B., Frank, P. G., Park, D. S., Russell, R. G., Li, M., Tang, B., Jelicks, L. A., Scherer, P. E., and Lisanti, M.P. (2002). Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglycer-idemia with adipocyte abnormalities. J. Biol. Chem. 277, 8635-8647.

48 Cohen, A. W., Razani, B., Wang, X. B., Combs, T. P., Williams, T. M., Scherer, P. E., and Lisanti, M.P. (2003). Caveolin-

1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285, C222-C235.

49 Cohen, A. W., Razani, B., Schubert, W., Williams, T. M., Wang, X. B., Iyengar, P., Brasaemle, D. L., Scherer, P. E., and Li-santi, M.P. (2004). Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53, 1261-1270.

50 Lisanti, M. P., Scherer, P. E., Tang, Z., and Sargiacomo, M. (1994). Caveolae, cav-eolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 4, 231-235.

51 Chun, M., Liyanage, U. K., Lisanti, M. P., and Lodish, H.F. (1994). Signal transduction of a G protein-coupled receptor in caveolae: colocalization of endothelin and its receptor with caveolin. Proc. Natl. Acad. Sci. USA 91, 11728-11732.

52 Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C., and Lublin, D.M. (1994). Cysteine3 of Src family protein ty-rosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353-363.

53 Chang, W. J., Ying, Y. S., Rothberg, K. G., Hooper, N. M., Turner, A. J., Gambliel, H. A., De Gunzburg, J., Mumby, S. M., Gilman, A. G., and Anderson, R. G. (1994). Purification and characterization of smooth muscle cell caveolae. J. Cell Biol. 126, 127-138.

54 Schnitzer, J. E., Oh, P., Jacobson, B. S., and Dvorak, A.M. (1995). Caveolae from luminal plasmalemma of rat lung endo-thelium: microdomains enriched in cav-eolin, Ca(2+)-ATPase, and inositol tri-sphosphate receptor. Proc. Natl. Acad. Sci. USA 92, 1759-1763.

55 Wiese, R. J., Mastick, C. C., Lazar, D. F., and Saltiel, A. R. (1995). Activation of mi-togen-activated protein kinase and phos-phatidylinositol 3'-kinase is not sufficient for the hormonal stimulation of glucose uptake, lipogenesis, or glycogen synthesis in 3T3-L1 adipocytes. J. Biol. Chem. 270, 3442-3446.

56 Brady, M., Bourbonais, F., and Saltiel, A. (1998). The activation of glycogen syn-thase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-L1 cells. J. Biol. Chem. 273, 14063-14066.

57 Smith, R. M., Harada, S., Smith, J. A., Zhang, S., and Jarett, L. (1998). Insulin-induced protein tyrosine phosphorylation cascade and signalling molecules are localized in a caveolin-enriched cell membrane domain. Cell Signal. 10, 355-362.

58 Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., and Stralfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961-1971.

59 Glenney, J. R. (1989). Tyrosine Phosphorylation of a 22-kDa protein is correlated with transformation by Rous Sarcoma Virus. J. Biol. Chem. 264, 20163-20166.

60 Ko, Y. G., Liu, P., Pathak, R. K., Craig, L. C., and Anderson, R.G. W. (1998). Early effects of pp60(v-src) kinase activation on caveolae. J. Cell. Biochem. 71, 524-535.

61 Lee, H., Woodman, S. E., Engelman, J. A., Volonte, D., Galbiati, F., Kaufman, H. L., Lublin, D. M., and Lisanti, M. P. (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveo-lae effectively uncouples c-Src and caveolin-1 (TYR-14). J. Biol. Chem. 276, 35150-35158.

62 Wary, K. K., Mariotti, A., Zurzolo, C., and Giancotti, F.G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625-634.

C., and Tsien, R.Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913-916.

64 Li, S., Seitz, R., and Lisanti, M.P. (1996). Phosphorylation of caveolin by Src tyro-sine kinases. J. Biol. Chem. 271, 3863-3868.

D., and Berk, B.C. (1997). c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein ki-nase 1. J. Biol. Chem. 272, 20389-20394.

66 Abe, J., Okuda, M., Huang, Q., Yoshi-zumi, M., and Berk, B.C. (2000). Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J. Biol. Chem. 275, 1739-1748.

67 Kapus, A., Di Ciano, C., Sun, J., Zhan, X., Kim, L., Wong, T. W., and Rotstein, O. D. (2000). Cell volume-dependent phosphorylation of proteins of the cortical cytoske-leton and cell-cell contact sites. The role of Fyn and FER kinases. J. Biol. Chem. 275, 32289-32298.

68 Alland, L., Peseckis, S. M., Atherton, R. E., Berthiaume, L., and Resh, M. D.

(1994). Dual myristylation and palmityla-tion of Src family member p59fyn affects subcellular localization. J. Biol. Chem. 269, 16701-16705.

69 Muller, G., Jung, C., Wied, S., Welte, S., Jordan, H., and Frick, W. (2001). Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol. Cell. Biol. 21, 4553-4567.

70 Sun, X. J., Pons, S., Asano, T., Myers, M. G., Glasheen, E., and White, M.F. (1996). The Fyn tyrosine kinase binds IRS-1 and forms a distinct signaling complex during insulin stimulation. J. Biol. Chem. 271, 10583-10587.

71 Songyang, Z., and Cantley, L.C. (1995). Recognition and specificity in protein ty-rosine kinase-mediated signalling. Trends Biochem. Sci. 20, 470-475.

72 Cujec, T. P., Medeiros, P. F., Hammond, P., Rise, C., and Kreider, B.L. (2002). Selection of v-Abl tyrosine kinase substrate sequences from randomized peptide and cellular proteomic libraries using mRNA display. Chem. Biol. 9, 253-264.

73 Beitner-Johnson, D., and LeRoith, D.

(1995). Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J. Biol. Chem. 270, 5187-5190.

74 Lin, W. H., Huang, C. J., Liu, M. W., Chang, H. M., Chen, Y. J., Tai, T. Y., and Chuang, L. M. (2001). Cloning, mapping, and characterization of the human sorbin and SH3 domain containing 1 (SORBS1) gene: a protein associated with c-Abl during insulin signaling in the hepatoma cell line Hep3B. Genomics 74, 12-20.

75 Sorokin, A., and Reed, E. (1998). Insulin stimulates the tyrosine dephosphorylation of docking protein p130cas (Crk-associ-ated substrate), promoting the switch of the adaptor protein crk from p130cas to newly phosphorylated insulin receptor substrate-1. Biochem. J. 334, 595-600.

76 Mastick, C. C., Sanguinetti, A. R., Kne-sek, J. H., Mastick, G. S., and Newcomb, L. F. (2001). Caveolin-1 and a 29-kDa cav-eolin-associated protein are phosphoryla-ted on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp. Cell Res. 266, 142-154.

77 Koleske, A. J., Baltimore, D., and Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 92, 1381-1385.

78 Cao, H., Courchesne, W. E., and Corley Mastick, C. (2002). A phosphotyrosine-de-pendent dihybrid protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J. Biol. Chem. 277, 8771-8774.

79 Sun, X., Majumder, P., Shioya, H., Wu, F., Kumar, S., Weichselbaum, R., Khar-banda, S., and Kufe, D. (2000). Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. J. Biol. Chem. 275, 17237-17240.

80 Sun, X., Wu, F., Datta, R., Kharbanda, S., and Kufe, D. (2000). Interaction between protein kinase C delta and the c-Abl tyro-sine kinase in the cellular response to ox-idative stress. J. Biol. Chem. 275, 7470-7473.

81 Plattner, R., Kadlec, L., DeMali, K. A., Ka-zlauskas, A., and Pendergast, A.M. (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400-2411.

82 Gertler, F. B., Hill, K. K., Clark, M. J., and Hoffmann, F.M. (1993). Dosage-sensitive modifiers of Drosophila abl tyrosine ki-nase function: prospero, a regulator of ax-onal outgrowth, and disabled, a novel ty-rosine kinase substrate. Genes Dev. 7, 441-453.

83 Gertler, F. B., Comer, A. R., Juang, J. L., Ahern, S. M., Clark, M. J., Liebl, E. C., and Hoffmann, F.M. (1995). enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 9, 521-533.

84 Shishido, T., Akagi, T., Ouchi, T., Geor-gescu, M. M., Langdon, W. Y., and Hana-fusa, H. (2000). The kinase-deficient Src acts as a suppressor of the Abl kinase for Cbl phosphorylation. Proc. Natl. Acad. Sci. USA 97, 6439-6444.

85 Lanier, L. M., and Gertler, F.B. (2000). From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr. Opin. Neurobiol. 10, 80-87.

86 Krause, M., Sechi, A. S., Konradt, M., Monner, D., Gertler, F. B., and Wehland, J. (2000). Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodi-lator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol. 149, 181-194.

87 Small, J. V., Stradal, T., Vignal, E., and Rottner, K. (2002). The lamellipodium: where motility begins. Trends Cell Biol. 12, 112-120.

88 Furstoss, O., Dorey, K., Simon, V., Barila, D., Superti-Furga, G., and Roche, S. (2002). c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO J. 21, 514-524.

89 Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J.A. (2003). Fyn tyrosine kinase is a critical regulator of Disabled-1 during brain development. Curr. Biol. 13, 9-17.

90 Feng, X., Gaeta, M. L., Madge, L. A., Yang, J. H., Bradley, J. R., and Pober, J.S. (2001). Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J. Biol. Chem. 276, 8341-8349.

91 Duxbury, M. S., Ito, H., Ashley, S. W., and Whang, E.E. (2004). CEACAM6 cross-linking induces caveolin-1-depend-ent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic ade-nocarcinoma cells. J. Biol. Chem. 279, 23176-23182.

92 Howell, B. W., and Cooper, J.A. (1994). Csk suppression of Src involves movement of Csk to sites of Src activity. Mol. Cell. Biol. 14, 5402-5411.

93 Kawabuchi, M., Satomi, Y., Takao, T., Shi-monishi, Y., Nada, S., Nagai, K., Tara-khovsky, A., and Okada, M. (2000). Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kina-ses. Nature 404, 999-1003.

94 Takeuchi, S., Takayama, Y., Ogawa, A., Ta-mura, K., and Okada, M. (2000). Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-ter-minal Src kinase, Csk. J. Biol. Chem. 275, 29183-29186.

95 Torgersen, K. M., Vang, T., Abrahamsen, H., Yaqub, S., Horejsi, V., Schraven, B., Rolstad, B., Mustelin, T., and Tasken, K.

(2001). Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J. Biol. Chem. 276, 29313-29318.

96 Thomas, S. M., and Brugge, J.S. (1997). Cellular functions regulated by Src family kinases. Annu. Rev. Cell. Dev. Biol. 13, 513-609.

97 Thomas, S. M., Soriano, P., and Ima-moto, A. (1995). Specific and redundant roles of Src and Fyn in organizing the cy-toskeleton. Nature 376, 267-271.

98 Fincham, V. J., and Frame, M.C. (1998). The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81-92.

99 Arthur, W. T., Petch, L. A., and Burridge, K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-depend-ent mechanism. Curr. Biol. 10, 719-722.

(2002). Focal adhesions require catalytic activity of Src family kinases to mediate integrin-matrix adhesion. Mol. Cell. Biol. 22, 1203-1217.

101 Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., and Chapman, H.A. (1999). A role for caveolin and the urokinase receptor in in-tegrin-mediated adhesion and signaling. J. Cell Biol. 144, 1285-1294.

102 van Deurs, B., Roepstorff, K., Hommel-gaard, A. M., and Sandvig, K. (2003). Cav-eolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13, 92-100.

103 Navarro, A., Anand-Apte, B., and Parat, M.O. (2004). A role for caveolae in cell migration. FASEB J. 18, 1801-1811.

104 Thomsen, P., Roepstorff, K., Stahlhut, M., and van Deurs, B. (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238-250.

105 Mundy, D. I., Machleidt, T., Ying, Y. S., Anderson, R. G., and Bloom, G. S. (2002). Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci. 115, 4327-4339.

106 Stahlhut, M., and van Deurs, B. (2000). Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11, 325-337.

107 Isshiki, M., Ando, J., Yamamoto, K., Fu-jita, T., Ying, Y., and Anderson, R. G.

(2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J. Cell Sci. 115, 475484.

108 Boyd, N. L., Park, H., Yi, H., Boo, Y. C., Sorescu, G. P., Sykes, M., and Jo, H.

(2003). Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am. J. Phys-iol. Heart Circ. Physiol. 285, H1113-H1122.

109 Beardsley, A., Fang, K., Mertz, H., Castra-nova, V., Friend, S., and Liu, J. (2005). Loss of caveolin-1 polarity impedes endo-thelial cell polarization and directional movement. J. Biol. Chem. 280, 3541-3547.

110 Minetti, C., Sotgia, F., Bruno, C., Scartez-zini, P., Broda, P., Bado, M., Masetti, E., Mazzocco, M., Egeo, A., Donati, M. A., Volonte, D., Galbiati, F., Cordone, G., Bri-carelli, F. D., Lisanti, M. P., and Zara, F. (1998). Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat. Genet. 18, 365-368.

111 Hagiwara, Y., Sasaoka, T., Araishi, K., Imamura, M., Yorifuji, H., Nonaka, I., Ozawa, E., and Kikuchi, T. (2000). Caveo-

lin-3 deficiency causes muscle degeneration in mice. Hum. Mol. Genet. 9, 3047-3054.

112 Turner, C.E. (2000). Paxillin interactions. J. Cell Sci. 113, 4139-4140.

113 Abe, J., and Berk, B.C. (1999). Fyn and JAK2 mediate Ras activation by reactive oxygen species. J. Biol. Chem. 274, 21003-21010.

114 Kumar, S., Bharti, A., Mishra, N. C., Raina, D., Kharbanda, S., Saxena, S., and Kufe, D. (2001). Targeting of the c-Abl ty-rosine kinase to mitochondria in the nec-rotic cell death response to oxidative stress. J. Biol. Chem. 276, 17281-17285.

115 Martindale, J. L., and Holbrook, N.J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192, 1-15.

116 Tong, P., Khayat, Z. A., Huang, C., Patel, N., Ueyama, A., and Klip, A. (2001). Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J. Clin. Invest. 108, 371-381.

117 Kanzaki, M., and Pessin, J.E. (2001). Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical ac-tin remodeling. J. Biol. Chem. 276, 42436-42444.

118 Kanzaki, M., and Pessin, J.E. (2002). Cav-eolin-associated filamentous actin (Cav-actin) defines a novel F-actin structure in adipocytes. J. Biol. Chem. 277, 25867-25869.

119 Parton, R. G., Molero, J. C., Floeten-meyer, M., Green, K. M., and James, D. E. (2002). Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J. Biol. Chem. 277, 46769-46778.

120 Watson, R. T., Shigematsu, S., Chiang, S. H., Mora, S., Kanzaki, M., Macara, I. G., Saltiel, A. R., and Pessin, J.E. (2001). Lipid raft microdomain compartmental-ization of TC10 is required for insulin signaling and GLUT4 translocation. J. Cell Biol. 154, 829-840.

Was this article helpful?

0 0
Supplements For Diabetics

Supplements For Diabetics

All you need is a proper diet of fresh fruits and vegetables and get plenty of exercise and you'll be fine. Ever heard those words from your doctor? If that's all heshe recommends then you're missing out an important ingredient for health that he's not telling you. Fact is that you can adhere to the strictest diet, watch everything you eat and get the exercise of amarathon runner and still come down with diabetic complications. Diet, exercise and standard drug treatments simply aren't enough to help keep your diabetes under control.

Get My Free Ebook

Post a comment