Type 2 Diabetes Defeated

Stop Diabetes Naturally

Get Instant Access

1 Schnitzer JE, Mcintosh DP, Dvorak AM, Liu J and Oh P (1995) Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435-1439.

2 Abrami L, Fivaz M, Kobayashi T, Kinosh-ita T, Parton RG and van der Groot FG (2001) Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. J. Biol. Chem. 276, 30729-30736.

3 Sowa G, Pypaert M and Sessa WC (2001) Distinction between signaling mechanisms in lipid rafts vs caveolae. Proc. Natl. Acad. Sci. USA 98, 14072-14077.

4 Oh P, Mcintosh DP and Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101-114.

5 Griffoni C, Spisni E, Santi S, Riccio M, Guarnieri T and Tomasi V (2000) Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 276, 756-761.

6 Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FRC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene disrupted mice. Science 293, 24492452.

7 Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Kneitz B, Lagaud G, Christ GJ, Edelmann W and Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121-38138.

8 Parpal S, Karlsson M, Thorn H, Stralfors P (2001) Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J. Biol. Chem. 276, 9670-9678.

9 Dreja K, Volstedlind M, Vinten J, Tra-num-Jensen J, Hellstrand P and Sward K (2002) Cholesterol depletion disrupts cav-eolae and differentially impairs agonist-induced arterial contraction. Arterioscler. Thromb. Vasc. Biol. 22, 1267-1272.

10 Westermann M, Steiniger F and Richter W (2005) Belt-like localization of caveolin in deep caveolae and its redistribution after cholesterol depletion. Histochem. Cell Biol. May 12, e-pub.

11 Thomsen P, Roepstorff K, Shahlhut M and van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Cell Biol. 13, 238-250.

12 Liu P, Wang P, Michaely P, Zhu M and Anderson RGW (2000) Presence of oxidized cholesterol in caveolae uncouples active platelet-derived growth factor receptors from tyrosine kinase substrates. J. Biol. Chem. 275, 31648-31654.

13 Fielding PE, Russel JS, Spencer TA, Hakamata H, Nagao K and Fielding CJ (2002) Sterol efflux to apolipoprotein A-1 originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 41, 4929-4937.

14 Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S and Parton RG (2005) Ultrastructural identification of un-coated caveolin-independent early endocy-tic vesicles. J. Cell Biol. 168, 465-476).

15 Dietrich C, Volovyk ZN, Levi M, Thompson NL and Jacobson K (2001) Partition ing of Thy-1, GM1 and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10642-10647.

16 Dietrich C, Bagatolli LA, Vovovyk ZN, Thompson NL, Levi M, Jacobson K and Gratton E (2001) Biophys. J. 3, 1417-1428.

17 Sheets ED, Lee GM, Simson R and Jacob-son K (1997) Transient confinement of a glycophosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 41, 12449-12458.

18 Ortegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P and Stralfors P (2004) Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary adipocytes. Eur. J. Biochem. 271, 2028-2036.

19 Smart EJ, Ying YS, Mineo C, Anderson RGW (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92, 10104-10108.

20 Pike LJ, Han X, Chung KN and Gross RW (2002) Lipid rafts are enriched in arachi-donic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative elec-trospray ionization/mass spectrometric analysis. Biochemistry 41, 2075-2088.

21 Fielding CJ and Fielding PE (2004) Membrane cholesterol and the regulation of signal transduction. Biochem. Soc. Trans. 32, 65-69.

22 Dreja K, Voldstedlund M, Vinten J, Tra-num-Jernsen J, Hellstrand P and Sward K (2002) Cholesterol depletion disrupts cav-eolae and differentially impairs agonist-induced arterial contraction. Arterioscler. Thromb. Vasc. Biol. 22, 1267-1272.

23 Fielding PE and Fielding CJ (1995) Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 34, 14288-14292.

24 Gallegos AM, Mcintosh AL, Atshaves BP and Schroeder F (2004) Structure and cholesterol domain dynamics of an enriched caveolae/lipid raft isolate. Biochem. J. 382, 451-461.

25 Song J and Waugh RE (1993) Bending rigidity of SOPC membranes containing cholesterol. Biophys. J. 64, 1967-1970.

26 Lundback JA, Birn P, Girsshman J, Hansen AJ and Anderson OS (1996) Membrane stiffness and channel function. Biochemistry 35, 3825-3830.

27 Stahlhut M and van Deurs B (2000) Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11, 325-337.

28 Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP and Edidin M (2003) Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-de-pendent organization of cell actin. Proc. Natl. Acad. Sci. USA 24, 13964-13969.

29 Byfield FJ, Aranda-Espinoza H, Roma-nenko VG, Rothblat GH and Levitan I (2004) Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys. J. 87, 3336-3343.

30 Hill WG, Almasri E, Ruiz WG, Apodaca G and Zeidel ML (2005) Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation. Am. J. Physiol. Cell Physiol. 289, C33-C41.

31 Schnitzer JE and Oh P (1996) Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270, H416-H422.

32 Murata M, Peranen J, Schriener R, Wieland F, Kurzchalia TV and Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 92, 10339-10343.

33 Li S, Song KS and Lisanti MP (1996) Expression and characterization of recombinant caveolin. Purification by polyhisti-dine tagging and cholesterol-dependent incorporation into defined lipid membranes. J. Biol. Chem. 271, 568-573.

34 Cho CH, Lee CS, Chang M, Jang IH, Kin SJ, Hwang I, Ryu SH, Lee CO and Koh GY (2004) Localization of VEGFR-2 and PLD-2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am. J. Physiol. 286, H1881-H1888.

35 Nanjundan N and Possmayer F (2001) Pulmonary lipid phosphate phosphohy-drolase in plasma membrane signaling platforms. Biochem. J. 358, 637-646.

36 Veldman RJ, Maestre N, Aduib OM, Medin JA, Salvayre R and Levade T (2001) A neutral sphingomyelinase residues in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumor necrosis factor signaling. Biochem. J. 355, 859-868.

37 Romiti E, Meacci E, Tanzi G, Becciolini L, Mitsutake S, Farnararo M, Ito M and Bruni P (2001) Localization of neutral ceramidase in caveolin-enriched light membranes of murine endothelial cells. FEBS Lett. 506, 163-168.

38 Wang Y, Yamaguchi K, Wada T, Hata K, Zhao X, Fujimoto T and Miyagi T (2002) A close association of the ganglioside-spe-cific sialidase Neu3 with caveolin in membrane microdomains. J. Biol. Chem. 277, 26252-26259.

39 Yu C, Alterman M and Dobrowsky RT (2005) Ceramide displaces cholesterol from lipid raft membranes and decreases the association of the cholesterol binding protein caveolin-1. J. Lipid Res. May, e-pub.

40 Kogo H and Fujimoto T (2000) Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett. 465, 119-123.

41 Prolini I, Sargiacomo M, Galbiati F, Rizzo G, Grignani F, Engelman JA, Oka-moto T, Ikezu T, Scherer PE, Mora R, Ro-driguez-Boulan E, Peschle C and Lisanti MP (1999) Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J. Biol. Chem. 274, 25718-25725.

42 Way M and Parton RG (1995) M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 376, 108-112.

43 Dupree P, Parton RG, Raposo G, Kurzchalia TV and Simons K (1993) Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597-1605.

44 Thorn H, Stenkula KG, Karlsson M, Or-tegren U, Nystrom FH, Gustavsson J and Stralfors P. Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol. Biol. Cell 14, 3967-3976.

45 Fernandez I, Ying Y, Albanesi J and Anderson RGW (2002) Mechanism of caveolin filament assembly. Proc. Natl. Acad. Sci. USA 99, 11193-11198.

46 Koleske AJ, Baltimore D and Lisanti MP (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 92, 1381-1385.

47 Lavie Y, Fiucci G and Liscovitch M (1998) Up-regulation of caveolae and caveolar constituents in multi-drug resistant cancer cells. J. Biol. Chem. 273, 32380-32383.

48 Lee SW, Reimer CL, Oh P, Campbell DB and Schnitzer JE (1998) Tumor cell growth inhibition by caveolin re-expression in human breast tumor cells. Onco-gene 16, 1391-1397.

49 Thyberg J (2002) Caveolae and cholesterol distribution in vascular smooth muscle cells of different phenotypes. J. Histo-chem. Cytochem. 50, 185-195.

50 Fielding PE, Chau P, Liu D, Spencer TA and Fielding CJ (2004) Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry 43, 2578-2586.

51 Stuermer CA and Plattner H. (2005) The 'lipid raft' microdomain proteins reggie-1 and reggie-2 (flotillins) are scaffolds for protein integration and signaling. Bio-chem. Soc. Symp. 72, 109-118.

52 Fielding CJ, Bist A and Fielding PE (1999) Intracellular cholesterol transport in synchronized human skin fibroblasts. Biochemistry 38, 2506-2513.

53 Yamamoto M, Toya Y, Jensen RA and Ish-ikawa Y (1999) Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp. Cell Res. 247, 380-388.

54 Matveev SV and Smart EJ (2002) Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. Am. J. Physiol. 282, C935-C946.

55 Liu P, Ying Y, Ko YG and Anderson RGW (1996) Localization of platelet-derived growth factor-stimulated phosphory-lation cascade to caveolae. J. Biol. Chem. 271, 10299-10303.

56 Park WY, Cho KA, Park JS, Kim DI and Park SC (2001) Attenuation of EGF signaling in senescent cells by caveolin. Ann. N. Y. Acad. Sci. 928, 79-84.

57 Ringerike T, Blystad FD, Levy FO, Mad-shus IH and Stang E (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J. Cell Sci. 115, 1331-1340.

58 Ringerike T, Blystad FD, Levy FO, Mad-shus IH and Stang E (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J. Cell Sci. 115, 1331-1340.

59 Labrecque L, Royal I, Surprenant DS, Patterson S, Gingras D and Beliveau R (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveo-lin-1 and plasma membrane cholesterol. Mol. Biol. Cell 14, 334-347.

60 Ikeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA and Alexander RW (2005) Novel role for ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 96, 467-475.

61 Cho CH, Lee CS, Chang M, Jang IH, Kim SJ, Hwang I, Ryu SH, Lee CO and Koh GY (2004) Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am. J. Physiol. 286, H1881-H1888.

62 Sanguinetti AR, Caoi H, Mastick CC (2003) Fyn is required for oxidative and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochem. J. 376, 159-168.

63 Shigematsu S, Watson RT, Khan AH and Pessin JE (2003) The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT-4. J. Biol. Chem. 278, 10683-10690.

64 Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, Sieck GC and Lee HC (2005) Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. J. Biol. Chem. 280, 11656-11664.

65 Sampson LJ, Hayabuchi Y, Standen NB and Dart C (2004) Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels. Circ. Res. 95, 1012-1018.

66 Mendez AJ, Lin G, Wade DP, Lawn RM and Oram JF (2001) Membrane domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-me-

diated lipid secretory pathway. J. Biol. Chem. 276, 3158-3166.

67 Chao WT, Tsai SH, Lin YC, Lin WW and Yang VC (2005) Cellular localization and interaction of ABCA1 and caveolin-1 in aortic endothelial cells after HDL incubation. Biochem. Biophys. Res. Commun. 332, 743-749.

68 Garrigues A, Escargueil AE and Orlowski S (2002) The multidrug transporter, P-gly-coprotein, actively mediates cholesterol redistribution in the cell membrane. Proc. Natl. Acad. Sci. USA 99, 10347-10352.

69 Demeule M, Jodoin J, Gingras D and Be-liveau R (2000) P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett. 466, 219-224.

70 Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, Higgins CF and Beliveau R (2003) J. Neurochem. 87, 1010-1023.

71 Hinrichs JW, Klappe K, Hummel I and Kok JW (2004) ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-en-riched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279, 5734-5738.

72 Babitt J, Trigatti B, Rigotti A, Smart EJ, Anderson RGW, Xu S and Krieger M (1997) Murine SR-BI, a high density lipo-protein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J. Biol. Chem. 272, 13242-13249.

73 Peng Y, Akmentin W, Connelly MA, Lund-Katz S, Phillips MC and Williams DL (2004) Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high density lipopro-teins. Mol. Biol. Cell 15, 384-396.

74 Azhar S, Nomoto A and Reaven E (2002) Hormonal regulation of adrenal microvil-lar channel formation. J. Lipid Res. 43, 861-871.

75 Chatenay-Rivauday C, Cakar ZP, Jeno P, Kuzmenko ES and Fiedler K (2004) Caveolae: biochemical analysis. Mol. Biol. Rep. 31, 67-84.

76 Garcia-Cardena G, Fan R, Stern DF, Liu J and Sessa WC (1996) Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271, 27237-27240.

77 Ghosh S, Gachhui R, Crooks C, Wu C, Li-santi MP and Stuehr DJ (1998) Interaction between caveolin-1 and the reductase domain of endothelial nitric oxide synthase. Consequences for catalysis. J. Biol. Chem. 273, 22267-22271.

78 Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G and Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Med. 6, 1362-1267.

79 Gratton JP, Fontana J, O'Connor DS, Garcia-Cardena G, McCabe TJ and Sessa WC (2000) Reconstitution of an endothelial nitric oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin-stimulated displacement of eNOS from caveolin-1. J. Biol. Chem. 275, 22268-22272.

80 Bernatchez PN, Bauer PM, Yu J, Prender-gast JS, He P and Sessa WC (2005) Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc. Natl. Acad. Sci. USA 102, 761-766.

81 Nohe A, Keating E, Underhill TM, Knaus P and Pedersen NO (2005) Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J. Cell Sci. 118, 643-650.

82 Razandi M, Oh P, Pedram A, Schnitzer J and Levin ER (2002) Ers associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16, 100-115.

83 Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP and Norman AW (2004) The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1-alpha,25(OH)2-vitamin D in vivo and in vitro. Mol. Endocrinol. 18, 2660-2671.

84 Couet J, Li S, Okamoto T, Ikezu T and Li-santi MP (1997) Identification of peptide and protein ligands for the caveolin-scaf-folding domain. Implications for the interaction of caveolin with caveolae-associ-ated proteins. J. Biol. Chem. 272, 6525-6533.

85 Woodman SE, Schlegel A, Cohen AW and Lisanti MP (2002) Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. Biochemistry 41, 3790-3795.

86 Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, Robert JC, Giatza-kis C, Papadopoulos V and Lacapere JJ (2005) Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19, 588-594.

87 Raman CS, Li H, Martasek P, Kral V, Masters BS and Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939-950.

88 Bornancin F and Parker PJ (1997) Phosphorylation of protein kinase C-alpha on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J. Biol. Chem. 272, 3544-3549.

89 Orry AJ and Wallace BA (2000) Modelling and docking the endothelin G-protein-coupled receptor. Biophys. J. 79, 3083-3094.

90 Toya Y, Schwencke C, Couet J, Lisanti MP and Ishikawa Y (1998) Inhibition of ade-nyl cyclase by caveolin peptides. Endocrinology 139, 2025-2031.

91 Friedland N, Lious HL, Lobel P, Stock AM (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc. Natl. Acad. Sci. USA 100, 2512-2517.

92 Romanowski MJ, Soccio RE, Breslow JL and Burley SK (2002) Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc. Natl. Acad. Sci. USA 99, 6949-6954.

93 Kallen JA, Schaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I and Fournier B (2002) X-ray structure of the hROR alpha LBD at 1.63A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORal-pha. Structure 10, 1697-1707.

94 Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, Robert JC, Giatza-kis C, Papadopoulos V and Lacapere JJ (2005) Characterization of the cholesterol recognition amino acid consensus se quence of the peripheral-type benzodiaze-pine receptor. Mol. Endocrinol. 19, 588-594.

95 Zheng YH, Plemenitas A, Fielding CJ and Peterlin BM (2003) Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virus. Proc. Natl. Acad. Sci. USA 100, 8460-8465.

96 Epand RM, Sayer BG and Epand RF (2005) Caveolin scaffolding region and cholesterol-rich domains in membranes. J. Mol. Biol. 345, 339-350.

97 Harris JS, Epps DE, Davio SR and Kezdy FJ (1995) Evidence for transbilayer, tail-to-tail cholesterol dimmers in dipalmitoyl-glycerophosphocholine liposomes. Biochemistry 34, 3851-3857.

98 Jensen KJ and Brask J (2005) Carbohydrates in peptide and protein design. Biopolymers. May 31, e-pub.

99 Hailstones D, Sleer LS, Parton RG and Stanley KK (1998) Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39, 369-379.

100 Sharma DK, Brown JC, Choudhury A, Peterson TE, Holicky E, Marks DL, Simari R, Parton RG and Pagano RE (2004) Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Cell. Biol. 15, 3114-3122.

101 Fielding CJ, Bist A and Fielding PE (1997) Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolay-ers. Proc. Natl. Acad. Sci. USA 94, 3753-3758.

102 Bist A, Fielding PE and Fielding CJ (1997) Two sterol regulatory element-like sequences mediate up-regulation of cav-eolin gene transcription in response to low density lipoprotein free cholesterol. Proc. Natl. Acad. Sci. USA 94, 10693-10698.

103 Zhu Y, Liao HL, Wang N, Yuan Y, Ma KS, Verna L and Stemerman MB (2000) Lipo-protein promotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler. Thromb. Vasc. Biol. 20, 2465-2470.

104 Colonna C and Podesta EJ (2005) ACTH-induced caveolin-1 tyrosine phosphoryla-tion is related to podosome assembly in Y1 adrenal cells. Exp. Cell Res. 304, 432-442.

105 Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pes-tell RG, Scherer PE and Lisanti MP (2000) constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo. Mol. Endocrinol. 14, 1750-1775.

106 Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D and Beliveau R (2004) Sr-c-mediated ty-rosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J. Biol. Chem. 279, 52132-52140.

107 Maggi D, Biedi C, Segat D, Barbero D, Panetta D and Cordera R (2002) IGF-1 induces caveolin 1 tyrosine phosphorylation and translocation in the lipid rafts. Bio-chem. Biophys. Res. Commun. 295, 1085-1089.

108 Kimura A, Mora S, Shigematsu S, Pessin JE and Saltiel AR (2002) The insulin receptor catalyzes the tyrosine phosphoryla-tion of caveolin-1. J. Biol. Chem. 277, 30153-30158.

109 Romiti E, Meacci E, Donati C, Formigli L, Zecchi-Orlandini S, Farnararo M, Ito M and Bruni P (2003) Neutral ceramidase secreted by endothelial cells is released in part associated with caveolin-1. Arch. Bio-chem. Biophys. 417, 27-33.

110 Stehr M, Estrada CR, Khoury J, Danciu TE, Sullivan MP, Peters CA, Solomon KR, Freeman MR and Adam RM (2004) Caveolae are negative regulators of transforming growth factor-beta1 signaling in urethral smooth muscle cells. J. Urol. 172, 2451-2455.

111 Graziani A, Bricko V, Carmignani M, Graier WF and Groschner K (2004) Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A2-dependent EDHF formation. Cardiovasc. Res. 64, 234-242.

112 Gaudreault SB, Chabot C, Gratton JP and Poirier J (2004) The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospho-lipase A2 activity. J. Biol. Chem. 279, 356-362.

113 Tortelote GG, Valverde RH, Lemos T, Guilherme A, Einicker-Lamas M and

Vieyra A (2004) The plasma membrane Ca2+ pump from proximal kidney tubules is exclusively localized and active in cav-eolae. FEBS Lett. 576, 31-35.

114 Zeidan A, Broman J, Hellstrand P and Sward K (2003) Cholesterol dependence of vascular ERK1/2 activation and growth in response to stretch: role of endothelin-1. Arterioscler Thromb. Vasc. Biol. 23, 1528-1534.

115 Troost J, Lindenmaier H, Haefeli WE and Weiss J (2004) Modulation of cellular cholesterol alters p-glycoprotein activity in multidrug-resistant cells. Mol. Pharmacol. 66, 1332-1339.

116 Rybin VO, Xu X, Lisanti MP and Steinberg SF (2000) Differential targeting of beta-adrenergic receptor subtypes and adenyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J. Biol. Chem. 275, 41447-41457.

117 Parpal S, Karlsson M, Thorn H and Stral-fors P (2001) Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J. Biol. Chem. 276, 9670-9678.

118 Blair A, Shaul PW, Yuhanna IS, Conrad PA and Smart EJ (1999) Oxidized low density lipoprotein displaces endothelial nitric oxide synthase (eNOS) from plas-malemmal caveolae and impairs eNOS activation. J. Biol. Chem. 274, 32512-32519.

119 Niggli V, Meszaros AV, Oppliger C and Tornay S (2004) Impact of cholesterol depletion on shape changes, actin reorganization, and signal transduction in neutro-phil-like HL-60 cells. Exp. Cell Res. 296, 358-368.

120 Taggart MJ, Leavis P, Feron O and Morgan KG (2000) Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp. Cell Res. 258, 72-81.

121 Caselli A, Taddei ML, Manao G, Camici G and Ramponi G (2001) Tyrosine-phos-phorylated caveolin is a physiological substrate of the low M(r) phosphotyrosine phosphatase. J. Biol. Chem. 276, 18849-18854.

Was this article helpful?

0 0
Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook

Post a comment