Acknowledgments

One of the authors (D. S.) is recipient of a fellowship from FIRB 2001, No. NE01S29H. Prion research in the Zurzolo laboratory is supported by EU grant QLK-CT-2002-81628, the Weizmann-Pasteur Foundation, the FRM grant and from Telethon (No. GGP04147).

Abbreviations

amyloid P-peptide

AD

Alzheimer's disease

AMF

autocrine motility factor

apoE

apolipoprotein E

APP

amyloid precursor protein

BIP

immunoglobulin heavy chain binding protein

BACE

BETA-SITE APP cleavage enzyme

CHO

Chinese hamster ovary

CJD

Creutzfeldt-Jakob disease

CLD

caveolar-like domain

CTF

carboxyl terminal fragment

224 J References

DRM

detergent-resistant membrane

ER

endoplasmic reticulum

ERAD

ER-associated degradation

GFAP

glial fibrillary ecidic protein

GPI

glycophosphatidylinositol

HEK

human embryonic kidney

HEK

human embryonic kidney

mßCD

methyl- b-cyclodextrin

PKC

protein kinase C

SV40

Simian virus-40

TCR

T-cell receptor

TGN

trans-Golgi network

References

1 Mann, D.M.A., Iwatsubo, T., Nochlin, D., et al. (1997) Amyloid deposition in chromosome 1-linked Alzheimers disease: the Volga German families. Ann. Neurol. 41: 52-57.

2 Hsiao, K. K., Chapman, P., Nilsen, S., et al. (1996) Correlative memory deficits, Aß elevation, and amyloid plaques in transgenic mice. Science 274: 99-102.

3 Soto, C. (1999) Alzheimer's and prion diseases as disorders of protein conformation: implication for the design of novel therapeutic approaches. J. Mol. Med. 77: 412-418.

4 Simons, K., Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387: 569-572.

5 Simons, K., Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 1(1): 31-39.

6 Brown, D.A., London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14: 111-136.

7 Janes, P.W., Ley, S.C., Magee, A.I., Ka-bouridis, P. S. (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol. 12: 23-34.

8 Langlet, C., Bernard, A.M., Drevot, P., He, H.T. (2000) Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol. 12: 250-255.

9 London, E., Brown, D.A. (2000) Insolubility of lipids in Triton X-100: physical ori gin and relationship to sphingolipid/cho-lesterol membrane domains (rafts). Bio-chim. Biophys. Acta 1508: 182-195.

10 Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., Schedl, A., Haller, H., Kurzchalia, T.V.(2001) Loss of caveolae, vascular dysfunction and pulmonary defects in caveo-lin-1 gene disrupted mice. Science 293: 2449-2452.

11 Capozza, F., Cohen, A. W., Cheung, M.W., Sotgia, F., Schubert, W., Battista, M., Lee, H., Frank , P.G., Lisanti, M.P. (2005) Muscle-specific interaction of cav-eolin isoforms: Differential complex formation between caveolins in fibroblastic vs. muscle cells. Am. J. Physiol. Cell. Physiol. 288: C677-91 EPUB 2004

Nov 17.

12 Palade, G.E. (1953) Fine structure of blood capillaries. J. Appl. Physiol. 24: 1424.

13 Parton, R.G. (2003) Caveolae - from ultrastructure to molecular mechanisms. Nat. Rev. Mol. Cell. Biol. 4: 162-167.

14 Liu, J., Oh, P., Horner, T., Rogers, R.A., Schnitzer, J.E. (1997) Organized endothe-lial cell surface signal transduction in caveolae distinct from glycosylphosphati-dylinositol-anchored protein microdomains. J. Biol. Chem. 272: 7211-7222.

15 Fra, A. M., Williamson, E., Simons, K., Parton, R.G. (1995) De novo formation of caveolae in lymphocytes by expression of

VIP21-caveolin. Proc. Natl. Acad. Sci. USA 92: 8655-8659.

16 Lipardi, C., Mora, R., Colomer, V., Paladino, S., Nitsch, L., Rodriguez-Boulan, E., Zurzolo, C. (1998) Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinosi-tol (GPI)-anchored proteins in epithelial cells. J. Cell Biol. 140(3): 617-626.

17 Pelkmans, L., Helenius, A. (2002) Endo-cytosis via caveolae. Traffic 3: 311-320.

18 Thomsen, P., Roepstorff, K., Stahlhut, M., van Deurs, B. (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13: 238-250.

19 Parton, R. G., Joggerstam, B., Simons, K. (1994) Regulated internalization of caveolae. J. Cell Biol. 127: 1199-1215.

20 Mayor, S., Riezman, H. (2004) Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell. Biol. 5(2): 110-120.

21 Oh, P., Mcintosh, D. P., Schnitzer, J. E. (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141: 101-114.

22 Nabi, I.R., Le, P.U. (2003) Caveolae/rafts-dependent endocytosis. J. Cell Biol. 161: 673-677.

23 van der Goot, F.G., Harder, T. (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol. 13(2): 89-97.

24 Nichols, B.J., Lippincott-Schwartz, J. (2001) Endocytosis without clathrin-coats. Trends Cell Biol. 11: 406-412.

25 Conner, S.D., Schmid, S.L. (2003) Regulated portals of entry into the cell. Nature 422: 37-44.

26 Campana, V., Sarnataro, D., Zurzolo, C. (2005) The highways and byways of prion protein trafficking. Trends Cell Biol. 15(2): 102-111.

27 Prusiner, S.B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95(23): 13 363-13383.

28 Harris, D.A. (1999) Cellular biology of prion diseases. Clin. Microbiol. Rev. 12: 429-444.

29 Aguzzi, A., Heppner, F. L. (2000) Pathoge-nesis of prion diseases: a progress report. Cell Death Differ. 7: 889-902.

30 Chiesa, R., Harris, D.A. (2001) Prion disease: what is the neurotoxic molecule? Neurobiol. Dis. 8: 743-763.

31 Harris, D.A. (2003) Trafficking, turnover and membrane topology of PrP. Br. Med. Bull. 66: 71-85.

32 Baron, G.S., Wehrly, D., Dorward, D.W., Chesebro, B., Caughey, B. (2002) Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes. EMBO J. 21(5): 1031-1040.

33 Taraboulos, A., Scott, M.R.D., Semenov, A., Avraham, D., Laszlo, L., Prusiner, S.B. (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129(1): 121-132.

34 Aguzzi, A., Polymenidou, M. (2004) Mammalian prion biology: one century of evolving concepts. Cell 116(2): 313-327.

35 Bueler, H., Fischer, M., Lang, Y., Blue-thmann, H., Lipp, H.P., DeArmond, S.J., Prusiner, S. B., Aevet, M., Weissmann, C. (1992) Normal development and behaviour of nice lacking the neuronal cell-surface PrP protein. Nature 356: 577-582.

36 Pauly, P.C., Harris, D.A. (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273(50): 3310733110.

37 Watt, N.T., Hooper, N.M. (2003) The prion protein and neuronal zinc homeo-stasis. Trends Biochem. Sci. 28(8): 406-410.

38 Brown, D.R. (2001) Copper and prion disease. Brain Res. Bull. 55(2): 165-173.

39 Chiarini, L.B., Freitas, A.R., Zanata, S.M., Brentani, R.R., Martins, V.R., Linden, R. (2002) Cellular prion protein transduces neuroprotective signals. EMBO J. 21(13): 3317-3326.

40 Mouillet-Richard, S., Ermonval, M., Che-bassier, C., Laplanche, JL., Lehmann, S., Launay, J.M., Kellermann, O. (2000) Signal transduction through prion protein. Science 289(5486): 1925-1928.

41 Mallucci, G.R., Ratte, S., Asante, E.A., Linehan, J., Gowland, I., Jefferys, J.G., Collinge, J. (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21(3): 202-210.

42 Collinge, J., Whittington, M.A., Sidle, K.C., Smith, C.J., Palmer, M.S., Clarke, A.R., Jefferys, J.G. (1994) Prion protein is necessary for normal synaptic function. Nature 370(6487): 295-297.

43 Graner, E., Mercadante, A.F., Zanata, S.M., Forlenza, O.V., Cabral, A. L., Veiga, S.S., Juliano, M.A., Roesler, R., Walz, R., Minetti, A., Izquierdo, I., Martins, V.R., Brentani, R. R. (2000) Cellular prion protein binds laminin and mediates neurito-genesis. Brain Res. Mol. Brain Res. 76(1): 85-92.

44 Solforosi, L., Criado, J.R., McGavern, D.B., Wirz, S., Sanchez-Alavez, M., Su-gama, S., DeGiorgio, L.A., Volpe, B.T., Wiseman, E., Abalos, G., Masliah, E., Gilden, D., Oldstone, M. B., Conti, B., Williamson, R.A. (2004) Cross-linking cellular prion protein triggers neuronal apop-tosis in vivo. Science 303(5663): 1514-1516 (e-pub 2004 January 29).

45 Lee, K.S, Linden, R., Prado, M.A., Brentani, R. R., Martins, V. R. (2003) Towards cellular receptors for prions. Rev. Med. Virol. 13(6): 399-408.

46 Prado, M.A., Alves-Silva, J., Magalhaes, A. C., Prado, V. F., Linden, R., Martins, V.R., Brentani, R.R. (2004) PrPc on the road: trafficking of the cellular prion protein. J. Neurochem. 88(4): 769-781.

47 Borchelt, D.R., Taraboulos, A., Prusiner S.B. (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267(23): 16188-16199.

48 Zanusso, G., Petersen, R.B., Jin, T., Jing, Y., Kanoush, R., Ferrari, S., Gambetti, P., Singh, N. (1999) Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J. Biol. Chem. 274(33): 23396-23404.

49 Nunziante, M., Gilch, S., Schatzl, H.M. (2003) Prion diseases: from molecular biology to intervention strategies. Chem-biochem 4(12): 1268-1284.

50 Hegde, R. S., Rane, N. S. (2003) Prion protein trafficking and the development of neurodegeneration. Trends Neurosci. 26(7): 337-339.

51 Beranger, F., Mange, A., Goud, B., Lehmann, S. (2002) Stimulation of PrP(C) retrograde transport toward the endoplas-mic reticulum increases accumulation of

PrP(Sc) in prion-infected cells. J. Biol. Chem. 277(41): 38972-38977.

52 Sarnataro, D., Campana, V., Paladino, S., Stornaiuolo, M., Nitsch, L., Zurzolo, C. (2004) PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol. Biol. Cell 15(9): 4031-4042 (e-pub 2004, June 30).

53 Bogdanov, M., Dowhan, W. (1999) Lipid-assisted protein folding. J. Biol. Chem. 274(52): 36827-36830.

54 Sanders, C.R., Nagy, J.K. (2000) Misfold-ing of membrane proteins in health and disease: the lady or the tiger? Curr. Opin. Struct. Biol. 10(4): 438-442.

55 Caughey, B., Raymond, G.J. (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J. Biol. Chem. 266(27): 18217-18223.

56 Taraboulos, A., Raeber, A.J., Borchelt, D.R., Serban, D., Prusiner, S.B. (1992) Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3(8): 851-863.

57 Supattapone, S. Nishina K., Rees J.R. (2002) Pharmacological approaches to prion research. Biochem. Pharmacol. 63(8): 1383-1388.

58 Shyng, S.L., Heuser, J.E., Harris, D.A. (1994) A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125(6): 1239-1250.

59 Madore, N., Smith, K. L., Graham, C.H., Jen, A., Brady, K., Hall, S., Morris, R. (1999) Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18(24): 6917-6926.

60 Sunyach, C., Jen, A., Deng, J., Fitzgerald, K.T., Frobert, Y., Grassi, J., McCaffrey, M.W., Morris, R. (2003). The mechanism of internalization of glycosylphosphatidy-linositol-anchored prion protein. EMBO J. 22(14): 3591-3601.

61 Lee, K.S., Magalhaes, A.C., Zanata, S.M., Brentani, R.R., Martins, V.R., Prado, M.A. (2001) Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J. Neurochem. 79(1): 79-87.

62 Vey, M., Pilkuhn, S., Wille, H., Nixon, R., DeArmond, S.J., Smart, E.J., Anderson, R. G., Taraboulos, A., Prusiner, S.B.

(1996) Subcellular colocalization of the cellular and scrapie prion proteins in cav-eolae-like membranous domains. Proc. Natl. Acad. Sci. USA 93(25): 14945-14949.

63 Kaneko, K., Vey, M., Scott, M., Pilkuhn, S., Cohen, F.E., Prusiner, S.B. (1997) COOH-terminal sequence of the cellular prion protein directs subcellular trafficking and controls conversion into the scra-pie isoform. Proc. Natl. Acad. Sci. USA 94(6): 2333-2338.

64 Peters, P.J., Mironov, A., Jr., Peretz, D., van Donselaar, E., Leclerc, E., Erpel, S., DeArmond, S.J., Burton, D.R., Williamson, R.A., Vey, M., Prusiner, S.B. (2003) Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J. Cell Biol. 162(4): 703-717.

65 Gacescu, R., Demaurex, N., Parton, R.G., Hunziker, W., Huber, L. A., Gruenberg, J. (2000) The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in rafts component. Mol. Biol. Cell 11: 2775-2791.

66 Baron, G.S., Caughey, B. (2003) Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform. J. Biol. Chem. 278(17): 14883-14892 (e-pub 2003 February 19).

67 Botto, L., Masserini, M., Cassetti, A., Palestini, P. (2004) Immunoseparation of prion protein enriched domains from other detergent-resistant membrane fractions, isolated from neuronal cells. FEBS Lett. 557(1-3): 143-147.

68 Naslavsky, N., Stein, R., Yanai, A., Friedlander, G., Taraboulos, A. (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J. Biol. Chem. 272(10): 6324-6331.

69 Klein, T. R., Kirsch, D., Kaufmann, R., Riesner, D. (1998) Prion rods contain small amount of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol. Chem. 379: 655-666.

70 Sarnataro, D., Paladino, S., Campana, V., Grassi, J., Nitsch, L., Zurzolo, C. (2002) PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts. Traffic 3(11): 810-821.

71 Kanu, N., Imokawua, Y., Drechsel, D. N., Williamson, R.A., Birkett, C. R., Bostock, C.J., Brockes, J.P. (2002) Transfer of scrapie prion infectivity by cell contact in culture. Curr. Biol. 12: 523-530.

72 Bogdanov, M., Dowhan, W. (1999) Lipid-assisted protein folding. J. Biol. Chem. 274(52): 36827-36830.

73 Sanders, C.R., Nagy, J.K. (2000) Misfold-ing of membrane proteins in health and disease: the lady or the tiger? Curr. Opin. Struct. Biol. 10(4): 438-442.

74 Sanghera, N., Pinheiro, T.J. (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315(5): 1241-1256.

75 Critchley, P., Kazlauskaite, J., Eason, R., Pinheiro, T.J. (2004) Binding of prion proteins to lipid membranes. Biochem. Biophys. Res. Commun. 313(3): 559-567.

76 Naslavsky, N., Shmeeda, H., Friedlander, G., Yanai, A., Futerman, A. H., Barenholz, Y., Taraboulos, A. (1999) Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J. Biol. Chem. 274(30): 20763-20771.

77 Fantini, J., Garmy, N., Mahfoud, R., Yahi, N. (2002) Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases. Expert Rev. Mol. Med. 2002: 1-22.

78 Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, O., Tagliavini, F. (1993) Neurotoxicity of a prion protein fragment. Nature 362: 543-546.

79 Ettaiche, M., Pichot, R., Vincent, J.P., Chabry, J. (2000) In vivo cytotoxicity of the prion protein fragment 106-126. J. Biol. Chem. 275: 36487-36490.

80 Jobling, M.F., Stewart, L.R., White, A.R., McLean, C., Friedhuber, A., Maher, F., Beyreuther, K., Masters, C. L., Barrow, C.J., Collins, S.J., Cappai, R. (1999) The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126. J. Neurochem. 73(4): 1557-1565.

81 Turner, A.J., Hooper, N. (1999) Role for ADAM-family proteinases as membrane protein secretases. Biochem. Soc. Trans. 27: 255-259.

82 Nunan, J., Small, D.H. (2000) Regulation of APP cleavage by a-, b- and -secretase. FEBS Lett. 483: 6-10.

83 Kojro, E., Gimpl, G., Lammich, S., Marz, W., Fahrenholz, F. (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the a-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 98(10): 5815-5820.

84 Wakatsuki, S., Kurisaki, T., Sehara-Fuji-sawa, A. (2004) Lipid rafts identified as locations of ectodomain shedding mediated by Meltrin beta/ADAM19. J. Neuro-chem. 89(1): 119-123.

85 Selkoe, D.J. (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81: 741-766.

86 Golde, T. E., Eckman, C.B. (2001) Cholesterol modulation as an emerging strategy for the treatment of Alzheimer's disease. Drug Discov. Today 6: 1049-1055.

87 Sisodia, S. S., St. George-Hyslop, P. H. (2002) gamma-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? Nat. Rev. Neurosci. 3(4): 281-290.

88 Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Te-plow, D. B., Ross, S., Amarante, P., Loel-off, R., Luo, Y., Fisher, S., Fuller, J., Eden-son, S., Lile, J., Jarosinski, M. A., Biere, A.L., Curran, E., Burgess, T., Louis, J.C., Collins, F., Treanor, J, Rogers, G., Citron, M. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440): 735-741.

89 Capell, A., Steiner, H., Willem, M., Kaiser, H., Meyer, C., Walter, J., Lammich, S., Multhaup, G., Haass, C. (2000) Maturation and pro-peptide cleavage of beta-secretase. J. Biol. Chem. 275: 30849-30854.

90 Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., Westaway, D., St. George-Hyslop, P., Cordell, B., Fraser, P., de Strooper, B. (1999) Preseni-lin 1 controls gamma-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J. Cell Biol. 147: 277-294.

91 Zhang, J., Kang, D. E., Xia, W., Okochi, M., Mori, H., Selkoe, D.J., Koo, E.H. (1998) Subcellular distribution and turnover of presenilins in transfected cells.

92 Kaether, C., Lammich, S., Edbauer, D., Ertl, M., Rietdorf, J., Capell, A., Steiner, H., Haass, C. (2002) Presenilin-1 affects trafficking and processing of beta APP and is targeted in a complex with nicas-trin to the plasma membrane. J. Cell Biol. 158: 551-561.

93 Riddell, D.R., Christie, G., Hussain, I., Dingwall, C.(2001) Compartmentalization of ß-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr. Biol. 11: 1288-1293.

94 Burns, M., Duff, K. (2002) Cholesterol in Alzheimer's disease and tauopathy. Ann. N. Y. Acad. Sci. 977: 367-375.

95 Ehehalt, R., Keller, P., Haass, C., Thiele, C., Simons, K. (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160(1): 113-123.

96 Lee, S.J., Liyanage, U., Bickel, P.E., Xia, W., Lansbury, P.T., Kosik, K.S. (1998) A detergent-insoluble membrane compartment contains A beta in vivo. Nat. Med. 4: 730-734.

97 Ikezu, T., Trapp, B.D., Song, K.S., Schlegel, A., Lisanti, M.P., Okamoto, T. (1998) Caveolae, plasma membrane microdomains for a-secretase-mediated processing of the amyloid precursor protein.

98 Avdulov, N.A., Chochina, S.V., Igbavboa, U., Warden, C.S., Vassiliev, A.V., Wood, W.G. (1997) Lipid binding to amyloid beta-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J. Neuro-chem. 69: 1746-1752.

99 Choo-Smith, L. P., Garzon-Rodriguez, W., Glabe, C.G., Surewicz ,W.K. (1997) Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 272: 22987-22990.

100 Matsuzaki, K., Horikiri, C. (1999) Interactions of amyloid beta-peptide (1-40) with ganglioside-containing membranes. Biochemistry 38: 4137-4142.

101 Brown, D.A., Rose, J.K. (1992) Sorting of GPI-anchored proteins to glycolipid-en-riched membrane subdomains during transport to the apical cell surface. Cell 68: 533-544.

102 Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., Simons, K.

(1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocam-pal neurons. Proc. Natl. Acad. Sci. USA 95: 6460-6464.

103 Rodal, S. K., Skretting, G., Garred, O., Vil-hardt, F., van Deurs, B., Sandvig, K.

(1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10: 961-974.

104 Koo, E.H., Squazzo, S.L. (1994) Evidence that production and release of amyloid beta protein involves the endocytic pathway. J. Biol. Chem. 269: 17386-17389.

105 Dumery, L., Bourdel, F., Soussan, Y., Fialkowsky, A., Viale, S., Nicolas, P., Re-boud-Ravaux, M. (2001) Beta-amyloid protein aggregation: its implication in the physiopathology of Alzheimer's disease. Pathol. Biol. (Paris) 49: 72-85.

106 Kakio, A. (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41: 7385-7390.

107 McLaurin, J. (1998) Structural transitions associated with the interaction of Alzheimer beta-amyloid peptides with ganglio-sides. J. Biol. Chem. 273: 4506-4515.

108 Mizuno, T., Nakata, M., Naiki, H., Michi-kawa, M., Wang, R., Haass, C., Yanagi-sawa, K. (1999) Cholesterol-dependent generation of a seeding amyloid ß-protein in cell culture. J. Biol. Chem. 274: 15110-15114.

109 Mahfoud, R., Garmy, N., Maresca, M., Yahi, N., Puigserver, A., Fantini, J. (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion and HIV proteins. J. Biol. Chem. 277: 11292-11296.

110 Perez, R.G., Soriano, S., Hayes, D.J., Os-taszewski, B., Xia, W., Selkoe, D.J., Chen, X., Stokin, G.B., Koo, E.H. (1999) Muta-genesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover and the generation of secreted fragments, including Abeta 42. J. Biol. Chem. 274: 18851-18856.

111 Huse, J.T., Pijak, D.S., Leslie, G.J., Lee, V.M., Doms, R.W. (2000) Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer's disease beta secretase. J. Biol. Chem. 275: 33729-33737.

112 Kamal, A., Almenar-Queralt, A., LeBlanc, J.F., Roberts, E.A., Goldstein, L.S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414: 643-648.

113 Damke, H.T., Baba, T., Warnock, D.E., Shmid, S.L. (2004) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127: 915-934.

114 Lanzetti, L., Rybin, V., Malabarba, M.G., Christoforidis, S., Scita, G., Zerial, M., Di Fiore, P. P. (2000) The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408: 374-377.

115 Chyung, J.H., Selkoe, D.J. (2003) Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid betaprotein at the cell surface. J. Biol. Chem. 278(51): 51035-51043 (e-pub 2003 October 02).

116 Haass, C., Koo, E.H., Mellon, A., Hung, A.Y., Selkoe, D.J. (1992) Targeting of cell surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357: 500-503.

117 Parvarthy, S., Hussain, I., Karran, E.H., Turner, A.J., Hooper, N.M. (1999) Cleavage of Alzheimer's amyloid precursor protein by alpha-secretase occurs at surface of neuronal cells. Biochemistry 38: 9728-9734.

118 Cordy, J.M., Hussain, I., Dingwall, C., Hooper, N.M., Turner, A.J. (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 100: 11735-11740.

119 Abad-Rodriguez, J., Ledesma, M.D., Craessaerts, K., Perga, S., Medina, M., Delacourte, A., Dingwall, C., De Strooper,

B., Dotti, C.G. (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167: 953-960.

120 Koo, E.H., Park, L., Selkoe, D.J. (1993) Amyloid beta-protein as a substrate interacts with extracellular matrix to promote neurite outgrowth. Proc. Natl. Acad. Sci. USA 90: 4748-4752.

121 Sisodia, S. S. (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA 89: 6075-6079.

122 Arribas, J., Lopez-Casillas, F., Massague, J. (1997) Role of the juxtamembrane domains of the transforming growth factor-alpha precursor and the beta-amyloid precursor protein in regulated ectodomain shedding. J. Biol. Chem. 272: 17161-17165.

123 De Strooper, B., Umans, L., Van Leuven, F., Van Den Berghe, H. (1993) Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. J. Cell Biol. 121: 295-304.

124 Haass, C., Koo, E. H., Capell, A., Teplow, D.B., Selkoe, D.J. (1995) Polarized sorting of beta-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals.

125 De Strooper, B., Van Leuven, F., Van den Berghe, H. (1992) Alpha 2-macroglobulin and other proteinase inhibitors do not interfere with the secretion of amyloid precursor protein in mouse neuroblastoma cells. FEBS Lett. 308(1): 50-53.

126 Selkoe, D.J. (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell Biol. 10: 373-403.

127 Nordstedt, C., Caporaso, G.L., Thyberg, J., Gandy, S.E., Greengard, P. (1993) Identification of the Alzheimer beta/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells. J. Biol. Chem. 268(1): 608-612.

128 Ledesma, M.D., Da Silva, G.S., Cras-saerts, K., Delacourte, A., De Strooper, B., Dotti, C. G. (2000) Brain plasmin enhances APP a-cleavage and is reduced in

Alzheimer's disease brains. EMBO Rep. 1(6): 530-535.

129 Koike, H., Tomioka, S., Sorimachi, H., Saido, T.C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K., Ishiura, S. (1999) Membrane-anchored metalloprotease MDC9 has an alpha-sec-retase activity responsible for processing the amyloid precursor protein. Biochem. J. 343: 371-375.

130 Ledesma, M.D., Abad-Rodriguez, J., Gal-van C., Biondi E., Navarro, P., Delacourte, A., Dingwall, C., Dotti, C.G. (2003) Rafts disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep. 4(12): 1190-1196.

131 Li, Y.M., Xu, M., Lai M.T., Huang, Q., Castro, J. L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelil J.G., et al. (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405: 689-694.

132 Wahrle, S., Das, P., Nyborg, A.C., McLen-don, C., Shoji, M., Kawarabayashi, T., Younkin, L. H., Younkin, S.G., Golde,

T. E. (2002) Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9(1): 11-23.

133 Vetrivel, K.S., Cheng, H., Lin, W., Sa-kurai, T., Li, T., Nukina, N., Wong, P.C., Xu, H., Thinakaran, G. (2004) Association of -secretase with lipid rafts in post-Golgi endosomes membranes. J. Biol. Chem. 279: 44945-44954.

134 Wada, S., Morishima-Kawashima, M., Qi, Y., Misono, H., Shimada, Y., Ohno-Iwa-shita, Y., Ihara, Y. (2003) Gamma-secretase activity is present in rafts but is not cholesterol-dependent. Biochemistry 42(47): 13977-13986.

135 Anderson, R.G., Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296(5574): 18211825.

136 Hanada, K., Izawa, K., Nishijima, M., Akamatsu, Y. (1993) Sphingolipid deficiency induces hypersensitivity of CD14, a glycosylphosphatidylinositol-anchored protein, to phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 268: 13820-13823.

137 Hanada, K., Nishijima, M., Akamatsu, Y., Pagano, R.E. (1995) Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270: 6254-6260.

138 Sawamura, N., Ko, M., Yu, W., Zou, K., Hanada, K., Suzuki, T., Gong, J. S., Yana-gisawa, K., Michikawa, M. (2004) Modula^ tion of amyloid precursor protein cleavage by cellular sphingolipids. J. Biol. Chem. 279(12): 11984-11991.

Was this article helpful?

0 0
Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


Post a comment