Abbreviations

AA amino acid cms critical micelle concentration cbc critical budding concentration

References

1 Rothberg, K. G., J.E. Heuser, W.C. Donzell, Y. S. Ying, J. R. Glenney, and R. G. Anderson. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673-682 (1992).

2 Simons, K., and E. Ikonen. Functional rafts in cell membranes. Nature 387, 569-572 (1997).

3 Schlegel, A., D. Volonté, J.A. Engelman, F. Galbiati, P. Mehta, X. L. Zhang, P. E. Scherer, and M.P. Lisanti. Crowded little caves: structure and function of caveolae. Cell Signal 10, 457-463 (1998).

4 Drab, M., P. Verkade, M. Elger, M. Kasper, M. Lohn, B. Lauterbach, J. Menne, C. Lindschau, F. Mende, F. C. Luft, A. Schedl, H. Haller, and T.V. Kurzchalia. Loss of cav-eolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449 (2001).

5 Hailstones, D., L.S. Sleer, R.G. Parton, and K. K. Stanley. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39, 369-379 (1998).

6 Liu, J., X. B. Wang, D. S. Park, and M. P. Lisanti. Caveolin-1 expression enhances endothelial capillary tubule formation. J. Biol. Chem. 277, 10661-10668 (2002).

7 Helfrich, W., and Servus R. Nuovo Cimento D 3, 137 (1984).

8 Safran, S.A. Statistical Thermodynamics of Surfaces, Interfaces and Membranes. Perseus, Cambridge, MA (1994).

9 Evans, E., and Rawicz, W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. LEtt. 64, 2094-2097 (1990).

10 Brochard, F., and J.F. Lennon. J. Physique (Paris) 36, 1035 (1975).

11 Chaikin, P. M., and T. C. Lubensky. Principles of condensed matter physics. Cambridge University Press, Cambridge UK (1995).

12 Reichl, L. E. A modern course in statistical physics. Edward Arnold, London (1980).

13 Gov, N.S., and S.A. Safran. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal. Defects Biophys. J. 88, 1859-1874 (2005).

14 Oh, P., D.P. Mcintosh, and J.E. Schnitzer. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by

GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101-114 (1998).

15 Sheetz, M.P. Cell control by membrane-cy-toskeleton adhesion, Nat. Rev. Mol. Cell Biol. T, 392-396 (2001).

16 Lipowsky, R. (1992) Budding of membranes induced by intramembrane domains J. Phys. II France T, 1825-1840. Li-powsky, R. Domain-induced budding of fluid membranes Biophys. J. 64, 1133-1138 (1993).

17 Turner, M.S., P. Sens, and N.D. Socci. Recycling and the control of raft-like membrane domains Phys. Rev. Let. (Submitted).

1S Mouritsen, O., and M. Bloom. Biophys. J. 46, 141 (1984); Annu. Rev. Biophys. Biomol. Struct. TT, 145 (1993).

19 Leibler, S. Curvature instability in membranes. Journal de Physique 147, 507-516 (1986).

20 Lipowsky, R. Bending of membranes by anchored polymers. Europhys. Lett. BO, 197-202 (1995).

21 Szleifer, I., O.V. Gerasimov, and D.H. Thomson. Spontaneous liposome formation induced by grafted poly(ethylene oxide) layers. Proc. Natl. Acad. Sci. USA 95, 1032-1037 (1998).

22 Sens, P., and M. S. Turner. Theoretical Model for the Formation of Caveolae and Similar Membrane Invagination. Biophys. J. S6, 1-9 (2004).

23 Evans, A., M.S. Turner, and P. Sens. Interactions between proteins bound to biomembranes. Phys. Rev. E. 67 041907 (2003).

24 Doi, M., and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, Oxford UK (1984).

25 de Gennes, P. G. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979).

26 Bickel, T., C. Jeppesen, and C. M. Marques. Local entropic effects of polymers grafted to soft interfaces. Eur. Phys. J. E 4, 33-43 (2001).

27 Li, S., F. Galbiati, D. Volonte, M. Sargia-como, J. A. Engelman, K. Das, P. E. Scherer, and M. P. Lisanti. Mutational analysis of caveolin induced vesicle formation.

Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett. 434, 127-134 (1998).

28 Sear, R. P., S.W. Chung, G. Markovich, W. M. Gelbart, and J.R. Heath. Spontaneous patterning of quantum dots at the air-water interface. Phys. Rev. E. 59, R6255-R6258 (1999).

29 Prescott, L., and M.W. Brightman. The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue Cell 8, 248-258 (1976).

30 Sens, P., and M.S. Turner. Budded membrane microdomains as regulators for cellular tension (2005).

31 Parton, R.G. Life without caveolae. Science 293, 2404 (2001).

32 Raucher, D., and M.P. Sheetz. Characteristics of a membrane reservoir buffering membrane tension, Biophys. J. 77, 1992-2002 (1999).

33 Morris, C. E., and U. Homann. Cell surface area regulation and membrane tension J. Membrane Biol. 179, 79-102 (2000).

34 Woodman, S. E., F. Sotgia, F. Galbiati, C. Minetti, and M. P. Lisanti. Caveolinopa-thies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62, 538-543 (2004).

35 Repetto, S., M. Bado, P. Broda, G. Lucania, E. Masetti, F. Sotgia, I. Carbone, A. Pavan, E. Bonilla, G. Cordone, M. P. Lisanti, and C. Minetti. Increased number of caveolae and caveolin-3 overexpression in Duchenne muscular dystrophy. Biochem. Biophys. Res. Commun. 261, 547-550

36 Park, H., Y.-M. Go, P.L. St.John, M.C. Ma-land, M. P. Lisanti, D. R. Abrahamson, and H. Jo. Plasma membrane cholesterol is a key molecule in shear-dependent activation of extracellular signal-regulated kinase. J. Biol. Chem. 273, 32304-32311 (1998).

37 Fielding, C.J., A. Bist, and P.E. Fielding. Intracellular cholesterol transport in synchronized human skin fibroblasts. Biochemistry 38, 2506-2513 (1999).

Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


Post a comment