Suturing

Intracorporeal Technique

In laparoscopic tissue approximation, intracorporeal suturing and knot tying is the preferred method because it is highly adaptable and economical while utilizing standard laparoscopic instruments. In certain occasions, e.g., laparoscopic rectopexy, intracorporeal knotting is still feasible but extracorporeal knotting may be preferred.

The ergonomic positionings of the surgeon, laparoscope, and each of the hand instruments are crucial to facilitate the intracorporeal maneuvers. The ideal position for the laparoscope is midway between two working ports. The port positioning, relative to the proposed suture line, should provide the proper angle of access and a fulcrum for the instruments. The ideal angle between laparoscope and each-handed instrument has been reported to be 30-45°. The surgeon, target tissue (suture line), and the monitor should be positioned in line, to maximize surgeon's eye-hand coordination. This "triangulation" positioning should be preserved in unison when the surgeon attempts to suture different sites.

Laparoscopic suturing instruments have a variety of designs. The handle can have either a pistol grip or an in-line, coaxial handle, with or without a holding ring. Our current preference is the ringless in-line handle, which affords greater maneuverability even in difficult situations (Figure 6.13). The needle driver, used mostly by the dominant hand, handles the needle and suture material. The driver for this purpose should have a short shaft and a powerful and blunt tip. The assisting grasper, used by the nondominant hand, handles the tissue and is to be more curved and pointed.

The principle of needle handling and passage is similar to that of open surgery. However, a higher level of concentration is required to perform even simple needle driving maneuvers when working in a magnified laparoscopic field. The strength of the needle holder, in particular the locking and unlocking maneuver, can inadvertently traumatize the tissue, especially in thin structures such as small bowel. Handling needles outside the laparoscopic view may lead to incidental injuries to the surrounding organs. A good cooperation with laparo-scopist and assistant surgeon is essential to avoid this situation.

A suture with a GI needle, less than 15 cm in length, is introduced via a 10/12-mm working port. This insertion is facilitated by grasping

Parrot Jaw Needle Grasper
Figure 6.13. A popular laparoscopic needle driver (parrot beak) and assistant grasper (flamingo beak) (Szabo-Berci laparoscopic needle holders and graspers; Karl Storz, Tuttlingen, Germany).

the suture material 1-2 cm away from the needle. The suture is grasped by the right-handed needle holder and passed through the tissue (from right to left in this example), with a short tail left on the trailing side (Figure 6.14). The right-handed needle holder regrasps the suture immediately adjacent to the needle after the passage. The short tail should be long enough so that it cannot be pulled out accidentally from the tissue, but not so long that it compromises the following tying procedure. The right-handed instrument then holds the long tail and forms a "C-loop" (Figure 6.15). The left-handed instrument is placed over the loop. The right-handed instrument is used to wrap the long tail around the stationary tip of the left instrument. The left-handed instrument grasps the short tail under the arch in the suture, and is pulled back to the left to complete the first flat knot (Figures 6.16 and 6.17). Holding the jaws of the assistant grasper open before grasping the short tail may help prevent the loops from sliding off its tip. For the first knot, a simple square knot should be used for braided sutures and a surgeon's knot for monofilament sutures.

For the second opposing flat knot, a "reverse C-loop" is created by the left-handed instrument (Figure 6.18). The right instrument is placed over the reverse C-loop and the left-handed instrument wraps the thread around the right instrument (Figure 6.19). The tips of both instruments are moved together in unison toward the short tail, which is grasped with the right instrument. The second knot is completed by pulling back the short tail through the loop and pulling both tails in opposite directions parallel to the stitch under equal tension (Figure 6.20).

If the first knot becomes loose while beginning the second knot, the first locking square knot can be converted into a sliding knot (at least with monofilament suture material) by pulling one strand until it is

Laparoscopic Suturing
Figure 6.14. Intracorporeal suturing. Introducing the needle and suture into the abdomen through a 10-mm or larger cannula.
Suture Loop
Figure 6.15. Intracorporeal suturing. To initiate the knot, wind the loop of suture (the "C" loop) around the assistant grasper.
Loop Suture Around Coronary Artery
Figure 6.16. Intracorporeal suturing. Grasping the short tail and pulling it back through the C loop.
Szabo Berci Needle Holder
Figure 6.17. Intracorporeal suturing. Completing the initial flat knot.
Surgical Laparoscopic Knot
Figure 6.18. Intracorporeal suturing. Wind the loop around the right-handed instrument to create the second knot.
Triangulation Suturing
Figure 6.19. Intracorporeal suturing. The short tail is pulled back through the loop.
Laparoscopic Knot Pusher
Figure 6.20. Intracorporeal suturing. Completion of the second knot.

straight (Figure 6.21). The knot on the other strand can then be pushed down to the proper position and converted back with pressure on both strands to ensure stability of the knot.

Extracorporeal Technique

In this method, a knot is tied extracorporeally on long thread and slid down to the tissue with the aid of a push rod (knot pusher). The technique seems to be relatively simpler than the intracorporeal knot tying, yet it requires a systematic, accommodative, and careful application to avoid traumatizing the tissues and damaging the suture.

A Roder knot is frequently used for extracorporeal tying. The Roder knot was originally developed a century ago as a ligating technique that used a catgut ligature loop with a slip knot for tonsillectomy in children. It was later introduced to laparoscopic practice by German gynecologist Semm with a push rod application system, before intra-corporeal knotting was developed. This is the knot now used in commercially available pretied suture ligatures with an applicator tube and sheath that fits through a 5-mm cannula. A wide variety of push rod systems is also available (Figure 6.22).

A long suture is brought into the laparoscopic field, leaving its tail outside of the cannula. A stitch is placed intracorporeally, and the needle end is brought out through the same cannula (Figure 6.23). Gas leakage should be prevented by blocking the cannula with the index finger of the assistant surgeon. A Roder knot is created by tying an overhand knot and then wrapping the suture tail back around both arms of the loop three times (Figure 6.24). The suture is locked by bringing the tail back through the large loop, between the last two twists of the wrap. The knot is then slid down with a knot pusher into the operative field and secured (Figure 6.25). Care must be taken

Laparoscopic Knot PusherLaparoscopic Knot Pusher Laparoscopic Knot Pusher Laparoscopic Knot Pusher

Figure 6.21. Conversion of a square knot to a sliding knot: A Two strands are pulled in opposite directions. B The knot is slid. C The knot is tightened. D Conversion back to a square knot.

Figure 6.21. Conversion of a square knot to a sliding knot: A Two strands are pulled in opposite directions. B The knot is slid. C The knot is tightened. D Conversion back to a square knot.

Figure 6.23.

Extracorporeal suturing. The extracorporeal knot is initiated by bringing both ends of the suture back through the same cannula. The assistant uses a finger to prevent gas leakage (asterisk).

Figure 6.23.

Extracorporeal suturing. The extracorporeal knot is initiated by bringing both ends of the suture back through the same cannula. The assistant uses a finger to prevent gas leakage (asterisk).

Extracorporeal Knot

Figure 6.24.

Extracorporeal suturing. The Roder knot is created extracorporeally by 1) first placing the one throw, 2) pinching it, 3) then winding one end of the suture three times around the two strands, and 4) passing it between the second and third wind and the two strands.

Figure 6.24.

Extracorporeal suturing. The Roder knot is created extracorporeally by 1) first placing the one throw, 2) pinching it, 3) then winding one end of the suture three times around the two strands, and 4) passing it between the second and third wind and the two strands.

Suturing KnotsExtracorporeal Knot

to prevent abrasion, traction, or laceration of tissue as the slip knot is secured.

Was this article helpful?

+1 0
Spiritual Weight Loss Mentality

Spiritual Weight Loss Mentality

Awesome Ways To Get Over Your Mentality That Keeps you Overweight! This Book Is One Of The Most Valuable Resources In The World When It Comes To Results In Your Slim-down and Health Efforts! Day in day out we keep ourselves absorbed with those matters that matter the most to us. A lot of times, it might be just to survive and bring in some money. In doing so we at times disregard or forget about the extra matters that are essential to balance our lives. They’re even more essential to supply real meaning to our world. You have to pay attention to your wellness.

Get My Free Ebook


Responses

Post a comment