Ethical foundation for insect conservation

The Lasting Happiness And Success Formula

The Secret to Happiness

Get Instant Access

We may notice . . . that the tree-hopper, called by the Greeks Tettix, by the latins Cicada, received also from the former the title of "Earth-born," - a title lofty in its lowliness, because it was an implied acknowledgment from men of Athens and of Arcady of a common origin with themselves - an admission that the insect was their brother, sprung (as they fabled) from the earth, their common parent, -- whence, also, they wore golden tree-hoppers in their hair.

Acheta domestica (1851)

We feel our world in crisis.

David Rothenberg (1989)

1.1 Introduction

Conservation action must have a sound philosophical and ethical foundation. This gives the action meaning and direction. It is the 'why' we are doing it. At the most superficial level, that of utility, nature is at our service to be used, ideally sustainably. In this philosophy, humans have complete dominion over nature, and this is the language of most international agreements and conventions.

Deeper levels require more wrestling with thoughts and ideals. Among these is one philosophical approach where humans and nature are still separate, but nature is to be admired and enjoyed. An alternative view is that humans are part of the fabric of nature, and nature is used sustainably yet respected deeply.

In recent years, a more profound environmental philosophy has emerged, where organisms, including insects, have the right to exist without necessarily being of any service to humans. A powerful epithet to this deep ecology view has emerged: that we should appreciate and love other organisms without the expectation of anything in return.

Different world religions have recognized the environmental crisis and have made declarations that bridge their faith for the future well-being of the world. While philosophy is an essential foundation for how we approach conservation activities, religion is a spiritual complement, which in some countries such as India can play a significant role at the local scale.

Insect diversity conservation has received an enormous upsurge in recent years, principally with the recognition of the major role that insects play in maintaining terrestrial ecological processes. Yet there is recognition too, that insect individuals and species are being lost at an enormous rate. Stemming this loss of diversity is a vast task. A philosophical base helps decide on which value systems we should use to approach the challenge. Religion then provides spiritual recognition that what we are doing is a good thing. These lead to the scientific pursuit of insect diversity conservation, which is the subject of the following chapters.

1.2 Environmental philosophy and insect conservation

1.2.1 Ethical foundations

No conservation effort can meaningfully begin without a firm foundation of human value systems or ethics. Such ethics are the language of conservation strategies. Without some moral guidelines, it is difficult to define our goals and hence the expected outcomes of conservation activity.

There is little to separate insects from other organismal aspects of biodiversity in environmental philosophy. A noteworthy exception is that not all insects are good for each other, or for us. Insects can be parasitoids or disease vectors. Indeed, we exploit parasitoids as biological control agents.

1.1 A ramification of the Resource Conservation Ethic. Mopane 'worms' (larvae of the emperor moth Gonimbrasia belina) are harvested and dried, and considered an important source of protein and fat to people in Africa.

At the arguably lowest level of ethical consideration, insects have utilitarian or instrumental value for us. This includes aesthetic, food, adornment, ornament, service, spiritual and cultural, heuristic, scientific, educational, conservation planning and ecological values. These utilitarian values have two facets. The first is that they are there for us to enjoy aesthetically and be left alone. This is the Romantic-Transcendental Preservation Ethic (Callicot, 1990). This goes beyond just the insects themselves. It considers all their interactions and ramifications with other aspects of nature. It is an ethic that we adopt when we visit a nature reserve. The second utilitarian facet is that insects are there for sustainable use (Figure 1.1). This is the Resource Conservation Ethic. The harvesting of honey from honeybees is an example. But this ethic may apply to a wider, indirect set of services that insects supply, such as pollination and natural biological control. Where insects do not fit snugly into this ethic is when many actually do a disservice to our resources by nibbling, piercing and burrowing into plants, transmitting disease and killing animals. To entertain this ethic may indeed involve some control of insects.

In both the Romantic-Transcendental Preservation Ethic and Resource Conservation Ethic, humans are essentially separate from the rest of nature and

1.2 Building an Evolutionary-Ecological Land Ethic at the smaller spatial scale into Resource Conservation Ethic at the larger spatial scale. Here remant linkages of grassland are maintaining ecological and evolutionary processes, while the landscape as a whole is also being utilized to produce timber for export (KwaZulu-Natal, South Africa).

1.2 Building an Evolutionary-Ecological Land Ethic at the smaller spatial scale into Resource Conservation Ethic at the larger spatial scale. Here remant linkages of grassland are maintaining ecological and evolutionary processes, while the landscape as a whole is also being utilized to produce timber for export (KwaZulu-Natal, South Africa).

organisms have positive, negative or neutral value. In contrast, Leopold (1949) articulates in a subtle and charming way that other species have come about through the same ecological and evolutionary means as humans, and as such, deserve equal consideration. Humans nevertheless, reserve the right to use and manage nature as well as there being recognition of the intrinsic value of other species and the integrity of ecosystems (Figure 1.2). This is the Evolutionary-Ecological Land Ethic. Rolston (1994) goes a step further, and points out that culture has now emerged out of nature, which brings with it a responsibility for humans to nurture other organisms. Samways (1996d) then illustrates that culture has now become an evolutionary path and the human self-manipulating genome the driving force. Ideally, we now need to build into our new genome an environmental ethic.

1.2.2 World in crisis

The sharp increase in consumerism and human population growth over the last few decades has stimulated an acute awareness of the adverse impacts on the natural environment. A feeling has developed that not all is well in the world, and that wild nature, unsullied by humans, may even have ended (McKibben, 1990). There is also a growing awareness and accumulating evidence that our world is in crisis -- but not necessarily doomed (Cincotta and Engleman,

2000). Out of these changes has developed a strong movement, that of deep ecology, which provides a sense of wisdom combined with a course for action (Naess, 1989). Pessimism is not allowed to prevail, and a sense of joy is the spirit behind the philosophy.

Deep ecology is not something vague as some have claimed. It is an ontology, which posits humanity as inseparable from nature, and with an emphasis on simplicity of lifestyle and on communication with all critics. Naess (1989) termed this approach ecophilosophy (shortened to ecosophy). It is the utilization of basic concepts from the science of ecology, such as complexity, diversity and symbiosis, to clarify the place of our species within nature through the process of working out a total view (Rothenberg, 1989). This is especially relevant to insect conservation, as the insect world is indeed complex and diverse, and it is one where symbioses in the widest sense are widespread. Also, it is at the core of the landscape approach to conservation, where focusing on individual species and interactions is insufficient to conserve the vastness of insect diversity. This emerging arena of ecophilosophy, ecopsychology or transpersonal ecology is likely to play a role in future conservation (Fox, 1993). Indeed, Johnson (1991) advances a potent argument on behalf of the morally significant interests of animals, plants, species and ecosystems. He notes that in a moral world, all living things, insects included, have a right to survival (Figure 1.3).

1.2.3 Overcoming the impasse between utility and deep ecology theories

Although deep ecology and even some schools of thought in landscape ecology (Naveh and Lieberman, 1990) include humans in the global ecological equation, it is nevertheless this very human factor that is threatening the planetary processes that in the past have led to the current, rich world-ecology. Although deep ecology purports a human omnipotence, the risk here is that a sense of place, and, in turn, places of wild nature, are left out. To ignore ecological differentials across the globe and to homogenize all would simply be sad. After all, it is the essence of conservation biology to conserve diversity, which, quite literally, is all the differences within nature and across the globe.

Norton (2000) argues persuasively that utility (instrumental value) and deep ecology (intrinsic value) theories are confrontational, and he then asks whether there is perhaps an alternative, shared value that humans may place on nature. The instrumental and intrinsic value theories share four questionable assumptions and obstacles: (1) a mutual exclusion of each other, (2) an entity, not process, orientation, (3) moral monism, and (4) placeless evaluation. To overcome these impasses, Norton (2000) suggests an alternative value system, which recognizes a continuum of ways that humans value nature. Such a spectrum would value processes rather than simply entities, is pluralistic and values biodiversity in place. Such a universal earth ethic values nature for the creativity of its

1.3 A road sign at Ndumo Game Reserve which emphasizes the ecophilosophy approach where all creatures have the right to survival, no matter how small or ecologically significant.

processes (Norton, 2000). This ethic is vital when we consider not only the sus-tainability of nature, whether for itself or for humans, but arguably and more importantly, it is crucial for maintaining the evolutionary potential of biodiversity, especially in extensive wild places (Samways, 1994).

The value of wild places is high, and such places are often the seat of interesting, curious and irreplaceable biodiversity. The problem with placing great emphasis on wild places is that reserves constitute less than 4% of the Earth's land surface (World Resources Institute, 1996). This emphasizes that much of nature is now within a stone's throw of humans, and the degree of anthropogenic modification varies from very little to very much. This spectrum has various degrees of ecological integrity. As such, a major goal of conservation is to conserve as much as possible of this remaining integrity, with due respect

Insect utility 9

to the role of critical processes in maintaining that integrity (Hunter, 2000a). Indeed, even wild places are only likely to survive in the long run if recognized as wildland gardens that continue to be used with minimum of damage (Janzen, 1999).

Rolston (1994) has illustrated that there are various types or levels of values: natural and cultural, diversity and complexity, ecosystem integrity and health, wildlife, anthropocentric and natural intrinsic. All enter the essence of conservation biology, and all impinge on insect diversity conservation. It is this diversity of values, when maintained, that enrich the world, not just for us, but also for all the other organisms and all the processes that make this, as far as we know, a unique planet.

1.3 Insect utility

Although in practice insects are rarely harvested in the way of many other organisms, the principle of utility value still applies to them. The most significant feature of insects in terms of this utilitarian philosophy is to ensure continuance of their ecological services, so that ecological integrity and health are maintained (see Chapter 3). This is where we largely do not understand the consequences of our actions. To name one example, landscape fragmentation and attrition of landscape patches influence the insect assemblages such that the services they normally supply may no longer be possible (see Chapters 4 and 5).

In the agricultural context, it is not always possible to maintain ecological integrity, even though specific insects are being conserved and human intentions are good. Natural ecosystems adjacent to agricultural fields are often utilized for pools of natural enemies that invade the crop and control pests. On harvesting of the crop, the natural enemies then flood back to the surrounding natural ecosystem where they exert strong, albeit local, impact on natural hosts. This is a manifestation of the human demand for harnessing the interaction between host and parasitoid or predator. Biological control is one of the most sought-after services of insects, and one which is not without risks to ecological integrity (Figure 1.4).

Ecological services from insects include more than predation and parasitism. Technical details of these are addressed in Chapter 3. Among these is pollination of crops, both by wild insects and by captive honeybees. Encouragement of these pollinating insects can hardly be in excess, as the same insects can play a major role in maintaining indigenous plants, and hence in their conservation (Kwak et al., 1996).

One area where insect overexploitation requires caution is in the case of colourful butterflies. Regulations need to be called into play, with many species on the IUCN Red List of Threatened Species (Hilton-Taylor, 2000). Local laws also

1.4 The parasitoid Aphytis melinus an important biological control agent against scale insects (Diaspididae). Biological control is one of the most sought after services from insects, but does carry risks (see Chapter 6). Although introduced specifically against Red scale (Aonidiella aurantii) in South Africa, A melinus is now known to parasitize at least ten other species.

1.4 The parasitoid Aphytis melinus an important biological control agent against scale insects (Diaspididae). Biological control is one of the most sought after services from insects, but does carry risks (see Chapter 6). Although introduced specifically against Red scale (Aonidiella aurantii) in South Africa, A melinus is now known to parasitize at least ten other species.

play a significant part, as does blanket protection of wild areas containing the habitats of these sought-after species. Insect farming can take pressure off the wild populations by providing reared specimens that are often in visibly better condition than wild-caught specimens.

Perhaps the utilitarian aspects of insects have been underexploited. While we are likely to see only limited progress in the direct harvesting of insects (simply because they are generally unpredictable, small and difficult to harvest) there may be some future for medical and novel silk products.

However, the heuristic value of insects in genetic research is undeniable, with Drosophila melanogaster virtually a household name. The future is likely to see particular insect genes, rather than the whole animal, having utilitarian value in many aspects of our lives.

Caring for the Earth (IUCN/UNEP/WWF, 1991), which is a world conservation strategy, implicitly addresses many facets of insect diversity conservation that underpin the well-being of humans. Insects and their activities are vital for conserving our life-support systems and for renewing our resources through services in addition to pollination, such as soil maintenance, population regulation, and

Insect rights and species conservation 11

in the food webs of terrestrial invertebrates. The value of insect utility therefore, is about conservation of insect diversity. This is part of the wider concept of sustainable use of the world's resources which involves a challenge, among others, which will require learning how to recognize and resolve divergent problems, which is to say a higher level of spiritual awareness (Orr, 2002).

1.4 Insect rights and species conservation

Individuals have rights so as to maintain and even improve their lives, and then they die. So then, do insects have rights? As this is such a difficult question to answer, it is best to put it in a converse sense. Do we have the right to assume that insects do not have rights? Bearing in mind the weight of their collective individuality, best we adopt the precautionary principle of keeping all the parts. This includes the moral option that, in fact, individual insects do have rights. From this standpoint, Lockwood (1987) proposes a minimum ethic: 'We ought to refrain from actions which may be unreasonably expected to kill or cause non-trivial pain in insects when avoiding these actions has no, or only trivial, costs to our own welfare.'

This may also be seen as a complement to species preservation, which is accentuated with increasing rarity of a species. The genotype and phenotype are naturally locked into a symbiosis. With great rarity and genetic bottlenecks, loss of individuals has the added responsibility of increasing risk to the species per se and its evolutionary potential.

It does not mean however, that the individual of an endangered species has any special rights over the individual of a widespread species. Both have nervous systems that demonstrate post-inhibitory rebound, both launch pheromones to attract a mate, and both will avoid a predator if they can. Both too, have an evolutionary offering to the future. Best we let individuals live (Figure 1.5).

But what of species? Is the fact that 99% of all species that have existed on earth are now extinct (Novacek and Wheeler, 1992) really a consideration? Perhaps not when we consider that many clades have evolutionarily advanced and that there is now more insect diversity on earth than ever before (Labandeira and Sepkoski, 1993). Yet no two species, or for that matter, subspecies or morphs (evo-lutionarily significant units, ESUs), are alike, and so all are special. This applies as much to the parasitoid as to the caterpillar host. Indeed, as polymorphisms are so rife in the insect world, it is essential to consider the caterpillar as well as its developmental polymorph, the butterfly. Reality has it, that we have to conserve both developmental morphs to preserve the species. The parasitoid and the butterfly polymorphism also remind us of the connectedness of all life, and that species value, in turn, is linked to the value of ecosystems and landscapes, the conservation of which are essential for maintaining all insect variety and interactions.

1.5 'The good, the bad and the ugly' - but there is not much between these three insects in terms of general biochemistry and physiology. All have a similar nervous system, but our perceptions of them vary considerably. (a) Basking malachite (Chlorolestes apri-cans), an attractive South African damselfly on the verge of extinction, (b) Citrus wax scale (Ceroplastes brevicauda), and other scale insect pests on a citrus twig that has been oversprayed with an insecticide (parathion), and (c) (see next page) the Leprous grasshopper (Phymateus leprosus), an African species that gives out an unpleasant protective foam when disturbed.

Spiritual conceptions 13

1.5 (cont.)

1.5 Spiritual conceptions

Jacobson (1990), with an educational perspective, has illustrated that conservation biology is an interdiscliplinary science and activity. It involves the basic biological sciences as well as the applied management sciences, such as wildlife management, forestry, range and forage management and fisheries. Impinging on conservation biology, besides the physical environment, is the implementational environment (planning, education, law, communication, public health, engineering and veterinary science) and the social environment (economics, political science, sociology, anthropology and philosophy). What is missing from this model, at least in explicit terms, is the role of spiritual beliefs. Yet conservation concerns everyone, as well as every organism. A conviction through spiritual involvement can play a major role in sustaining conservation action over and above the activities of scientists, managers and policy workers. This is particularly relevant in the case of insects, which are among 'the world's many creatures' and do not have the charisma of the large animals with which the western media are so absorbed.

Spiritual outlooks were brought to the fore in a major interfaith conference in Assisi, Italy in 1986. Various faiths made 'Declarations on Nature', sections of which directly relate to insect diversity as well as to other aspects of biodiversity, and are (Anonymous, 1986/7), in alphabetical order:

Buddhist In the words of the Buddha himself: 'Because the cause was there, the consequences followed; because the cause is there, the effects will follow.' 'These few words present the inter-relationship between cause (karma), and its effects . . . happiness and suffering do not simply come about by chance or irrelevant causes.''. . . it (Buddhism) . . . attaches great importance towards wildlife and the protection of the environment on which every being in this world depends on survival . . .'

Christian '. . . man's dominion cannot be understood as licence to abuse, spoil, squander or destroy what God has made manifest his glory. That dominion cannot be anything else than a stewardship in symbiosis with all creatures . . .' 'Every human act of irresponsibility towards creatures is an abomination.'

Hindu 'Hinduism believes in the all encompassing sovereignty of the divine, manifesting itself in a graded scale of evolution. The human race, though at the top of the evolutionary pyramid at present, is not seen as something apart from the earth.' 'This leads ... to a reverence for animal life. The Yajurveda lays down that ''no person should kill animals helpful to all. Rather, by serving them, one should attain happiness."'

Jewish 'In the Kabbalistic teaching, as Adam named all of God's creatures, he helped define their essence. Adam swore to live in harmony with those whom he had named. Thus, at the very beginning of time, man accepted responsibility, before God, for all of creation.' '. . . when the whole world is in peril, when the environment is in danger of being poisoned, and various species, both plant and animal, are becoming extinct, it is our Jewish responsibility to put the defence of the whole of nature at the very centre of concern.'

Muslim 'Allah makes the waters flow upon the earth, upholds the heavens, makes the rainfall and keeps the boundaries between day and night.' 'Unity, trusteeship and accountability . . . the three central concepts of Islam, are also the pillars of the environmental ethics of Islam ... It is these values which led Mohamed ... to say, ''Whoever plants a tree and diligently looks after it until it matures and bears fruit is rewarded."'

Throughout these declarations there is the common denominator that all in the world, including humans, are connected, and that protection of biodiversity and the environment is essential for a sustainable future. There is greater or lesser specific mention of organisms, although their role is implicit in the debate on interconnectedness. Such spiritual bases are now a fundamental underpinning for some major conservation donor agencies, such as the World Bank (Palmer and Finlay, 2003).

Summary 15

Like the philosophical approach to conservation biology, the religious one is also based on the writings of the intellectual forerunners. There is, of course, no guarantee that all followers will be strong adherents of a particular philosophy or religion. While the conservation of biodiversity needs positive philosophical, spiritual and active participation by all humans, this simply is not always going to happen. As Garner (2003) puts it 'Religion is not part of the problem; people are the problem'.

Nevertheless, philosophy gives guidance and draws attention to why we are doing what we are, and for whom. Religion then provides the spiritual underpinning. In turn, research explores the technical way forward, which is framed by policy makers, and implemented by managers.

1.6 Summary

Conservation activities require a philosophical base so as to reflect on why and for whom these activities are being undertaken. Insects, as they are so speciose, so numerous and so important in terrestrial ecosystems, are an important subject for environmental philosophy. A notable corollary however, is that not all insects are good for each other or for us.

There are various philosophical approaches, and among these are the utilitarian approaches of, on the one hand, the preservationist ethic (insects are there for us to enjoy) and the resource conservation ethic (insects provide useful goods and services for us). These philosophies set us apart from the rest of nature, and this has stimulated philosophies where humans and wild nature are considered together. One approach, of deep ecology, considers a total view and that all in the world is interconnected. More recent philosophies have emphasized that all organisms, including insects, have the right to survival. These philosophies, which portray omnipotence in nature, are being addressed with the added view that joy for nature and a sense of place are important. Furthermore, it is important to value nature at all hierarchical levels. It can be argued that insect individuals do have rights, but this is linked through the genotype-phenotype symbiosis, to species conservation. Polymorphisms, which are so rich in the insect world, are an additional consideration in this debate.

Declarations from some of the world's major religious faiths have the common denominator that all in the world, including humans, is connected. It is vital that natural ecological processes, of which insects are pivotal, must be sustained. Insect diversity conservation needs a philosophical and moral base so as to give reason to why it is being done. Religion spiritually underpins this, while research investigates the technical avenues available. Policy makers then provide the frame for these avenues, and managers implement them.

Was this article helpful?

0 0

Post a comment