1. C. von Economo, Sleep as a problem of localization, J. Nerv. Ment. Dis. 71, 249-259 (1930).

2. S. W. Ranson, Somnolence caused by hypothalamic lesions in the monkey, Arch. Neurol. Psychiatry. 41, 1

3. A. W. Hetherington and S. W. Ranson, Hypothalamic lesions and adiposity in the rat, Anat. Rec. 78, 149-172

4. B. K. Anand and J. R. Brobeck, Hypothalamic control of food intake in rats and cats, Yale J Biol Med. 24,

5. B. K. Anand and J. R. Brobeck, Localization of a "feeding center" in the hypothalamus of the rat, Proc Soc

6. E. M. Stricker, A. F. Swerdloff and M. J. Zigmond, Intrahypothalamic injections of kainic acid produce feeding and drinking deficits in rats, Brain Res. 158, 470-3 (1978).

7. E. Stellar, The physiology of motivation, Psychol Rev. 61, 5-22 (1954).

8. L. L. Bernardis and L. L. Bellinger, The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism, Neurosci Biobehav Rev. 17, 141-93 (1993).

9. L. L. Bernardis and L. L. Bellinger, The lateral hypothalamic area revisited: ingestive behavior, Neurosci

10. C. B. Saper, Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections, J Comp Neurol. 237, 21-46 (1985).

11. H. Kawauchi, I. Kawazoe, M. Tsubokawa, M. Kishida and B. I. Baker, Characterization of melanin-

concentrating hormone in chum salmon pituitaries, Nature. 305, 321-3 (1983).

12. J. M. Vaughan, W. H. Fischer, C. Hoeger, J. Rivier and W. Vale, Characterization of melanin-concentrating hormone from rat hypothalamus, Endocrinology. 125, 1660-5 (1989).

13. B. Griffond and B. I. Baker, Cell and molecular cell biology of melanin-concentrating hormone, Int Rev

14. G. Skofitsch, D. M. Jacobowitz and N. Zamir, Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain, Brain Res Bull. 15, 635-49 (1985).

15. F. Presse, G. Hervieu, T. Imaki, P. E. Sawchenko, W. Vale and J. L. Nahon, Rat melanin-concentrating hormone messenger ribonucleic acid expression: marked changes during development and after stress and glucocorticoid stimuli, Endocrinology. 131, 1241-50 (1992).

16. J. C. Bittencourt, F. Presse, C. Arias, C. Peto, J. Vaughan, J. L. Nahon, W. Vale and P. E. Sawchenko, The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization, J Comp Neurol. 319, 218-45 (1992).

17. C. Kohler, L. Haglund and L. W. Swanson, A diffuse alpha MSH-immunoreactive projection to the hippocampus and spinal cord from individual neurons in the lateral hypothalamic area and zona incerta, J Comp Neurol. 223, 501-14 (1984).

18. N. Naito, I. Kawazoe, Y. Nakai, H. Kawauchi and T. Hirano, Coexistence of immunoreactivity for melanin-

concentrating hormone and alpha-melanocyte-stimulating hormone in the hypothalamus of the rat, Neurosci Lett. 70, 81-5 (1986).

19. M. Kawata, K. Hashimoto, J. Takahara and Y. Sano, Immunohistochemical demonstration of the localization of corticotropin releasing factor-containing neurons in the hypothalamus of mammals including primates, AnatEmbryol (Berl). 165, 303-13 (1982).

20. I. Merchenthaler, S. Vigh, A. V. Schally and P. Petrusz, Immunocytochemical localization of growth hormone-releasing factor in the rat hypothalamus, Endocrinology. 114, 1082-5 (1984).

21. P. Y. Risold, D. Fellmann, D. Lenys and C. Bugnon, Coexistence of acetylcholinesterase-, human growth hormone-releasing factor(1-37)-, alpha-melanotropin- and melanin-concentrating hormone-like immunoreactivities in neurons of the rat hypothalamus: a light and electron microscope study, Neurosci Lett. 100, 23-8 (1989).

22. J. L. Nahon, F. Presse, J. C. Bittencourt, P. E. Sawchenko and W. Vale, The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus, Endocrinology. 125, 2056-65 (1989).

23. C. B. Saper, H. Akil and S. J. Watson, Lateral hypothalamic innervation of the cerebral cortex:

immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary/arcuate alpha-melanocyte stimulating hormone, Brain Res Bull. 16, 107-20 (1986).

24. D. Qu, D. S. Ludwig, S. Gammeltoft, M. Piper, M. A. Pelleymounter, M. J. Cullen, W. F. Mathes, R.

Przypek, R. Kanarek and E. Maratos-Flier, A role for melanin-concentrating hormone in the central regulation of feeding behaviour, Nature. 380, 243-7 (1996).

25. M. Rossi, S. J. Choi, D. O'Shea, T. Miyoshi, M. A. Ghatei and S. R. Bloom, Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight, Endocrinology. 138, 351-5 (1997).

26. K. M. Gautvik, L. de Lecea, V. T. Gautvik, P. E. Danielson, P. Tranque, A. Dopazo, F. E. Bloom and J. G.

Sutcliffe, Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction, Proc Natl Acad Sci U S A. 93, 8733-8 (1996).

27. L. de Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson, C. Fukuhara, E. L. Battenberg,

V. T. Gautvik, F. S. Bartlett, 2nd, W. N. Frankel, A. N. van den Pol, F. E. Bloom, K. M. Gautvik and J. G. Sutcliffe, The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity, Proc Natl Acad Sci U SA. 95, 322-7 (1998).

28. T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli, H. Tanaka, S. C. Williams, J. A.

Richarson, G. P. Kozlowski, S. Wilson, J. R. Arch, R. E. Buckingham, A. C. Haynes, S. A. Carr, R. S. Annan, D. E. McNulty, W. S. Liu, J. A. Terrett, N. A. Elshourbagy, D. J. Bergsma and M. Yanagisawa, Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell. 92, 1 page following 696 (1998).

29. R. M. Chemelli, J. T. Willie, C. M. Sinton, J. K. Elmquist, T. Scammell, C. Lee, J. A. Richardson, S. C.

Williams, Y. Xiong, Y. Kisanuki, T. E. Fitch, M. Nakazato, R. E. Hammer, C. B. Saper and M. Yanagisawa, Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation, Cell. 98, 437-51 (1999).

30. J. Hara, C. T. Beuckmann, T. Nambu, J. T. Willie, R. M. Chemelli, C. M. Sinton, F. Sugiyama, K. Yagami,

K. Goto, M. Yanagisawa and T. Sakurai, Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity, Neuron. 30, 345-54 (2001).

31. C. Broberger, L. De Lecea, J. G. Sutcliffe and T. Hokfelt, Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems, J Comp Neurol. 402, 460-74 (1998a).

32. C. Peyron, D. K. Tighe, A. N. van den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe and T. S. Kilduff,

Neurons containing hypocretin (orexin) project to multiple neuronal systems, J Neurosci. 18, 9996-10015 (1998).

33. C. F. Elias, C. B. Saper, E. Maratos-Flier, N. A. Tritos, C. Lee, J. Kelly, J. B. Tatro, G. E. Hoffman, M. M.

Ollmann, G. S. Barsh, T. Sakurai, M. Yanagisawa and J. K. Elmquist, Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area, J Comp Neurol. 402, 442-59 (1998).

34. J. L. Guan, K. Uehara, S. Lu, Q. P. Wang, H. Funahashi, T. Sakurai, M. Yanagizawa and S. Shioda,

Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation, Int J Obes Relat Metab Disord. 26, 1523-32 (2002).

35. E. E. Abrahamson and R. Y. Moore, The posterior hypothalamic area: chemoarchitecture and afferent connections, Brain Res. 889, 1-22 (2001).

36. P. Kristensen, M. E. Judge, L. Thim, U. Ribel, K. N. Christjansen, B. S. Wulff, J. T. Clausen, P. B. Jensen,

O. D. Madsen, N. Vrang, P. J. Larsen and S. Hastrup, Hypothalamic CART is a new anorectic peptide regulated by leptin, Nature. 393, 72-6 (1998).

37. P. D. Lambert, P. R. Couceyro, K. M. McGirr, S. E. Dall Vechia, Y. Smith and M. J. Kuhar, CART peptides in the central control of feeding and interactions with neuropeptide Y, Synapse. 29, 293-8 (1998).

38. C. Broberger, Cocaine- and amphetamine-regulated transcript (CART) and food intake: Behavior in search of anatomy, Drug. Dev. Res. 51, 124-142 (2000).

39. C. Broberger, Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y, Brain Res. 848, 101-13 (1999).

40. C. F. Elias, C. E. Lee, J. F. Kelly, R. S. Ahima, M. Kuhar, C. B. Saper and J. K. Elmquist, Characterization of CART neurons in the rat and human hypothalamus, J Comp Neurol. 432, 1-19 (2001).

41. C. Peyron and Y. Charnay, Hypocretin (orexin) and CART peptides are co-expressed in human but not in rodents' hypothalamus, FENS Meet Abstr. (2002).

42. Y. L. Hurd and P. Fagergren, Human cocaine- and amphetamine-regulated transcript (CART) mRNA is highly expressed in limbic- and sensory-related brain regions, J Comp Neurol. 425, 583-98 (2000).

43. B. Griffond, A. Deray, D. Fellmann, P. Ciofi, D. Croix and C. Bugnon, Colocalization of prolactin- and dynorphin-like substances in a neuronal population of the rat lateral hypothalamus, Neurosci Lett. 156, 915 (1993).

44. T. C. Chou, C. E. Lee, J. Lu, J. K. Elmquist, J. Hara, J. T. Willie, C. T. Beuckmann, R. M. Chemelli, T.

Sakurai, M. Yanagisawa, C. B. Saper and T. E. Scammell, Orexin (hypocretin) neurons contain dynorphin, J Neurosci. 21, RC168 (2001).

45. B. A. Gosnell, J. E. Morley and A. S. Levine, Opioid-induced feeding: localization of sensitive brain sites,

46. K. S. Eriksson, O. A. Sergeeva, O. Selbach and H. L. Haas, Orexin (hypocretin)/dynorphin neurons control

GABAergic inputs to tuberomammillary neurons, Eur J Neurosci. 19, 1278-84 (2004).

47. V. Cvetkovic, F. Poncet, D. Fellmann, B. Griffond and P. Y. Risold, Diencephalic neurons producing melanin-concentrating hormone are influenced by local and multiple extra-hypothalamic tachykininergic projections through the neurokinin 3 receptor, Neuroscience. 119, 1113-45 (2003).

48. R. Cortes, S. Ceccatelli, M. Schalling and T. Hokfelt, Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study, Synapse. 6, 369-91 (1990).

49. B. Griffond, P. Ciofi, L. Bayer, C. Jacquemard and D. Fellmann, Immunocytochemical detection of the neurokinin B receptor (NK3) on melanin-concentrating hormone (MCH) neurons in rat brain, J Chem Neuroanat. 12, 183-9 (1997).

50. F. Brischoux, V. Cvetkovic, B. Griffond, D. Fellmann and P. Y. Risold, Time of genesis determines projection and neurokinin-3 expression patterns of diencephalic neurons containing melanin-concentrating hormone, Eur J Neurosci. 16, 1672-80 (2002).

51. G. Skofitsch and D. M. Jacobowitz, Immunohistochemical mapping of galanin-like neurons in the rat central nervous system, Peptides. 6, 509-46 (1985).

52. T. Melander, T. Hokfelt and A. Rokaeus, Distribution of galaninlike immunoreactivity in the rat central nervous system, J Comp Neurol. 248, 475-517 (1986).

53. M. Hakansson, L. de Lecea, J. G. Sutcliffe, M. Yanagisawa and B. Meister, Leptin receptor- and STAT3-

immunoreactivities in hypocretin/orexin neurons of the lateral hypothalamus, J Neuroendocrinol. 11, 65363 (1999).

54. M. J. Alexander, M. A. Miller, D. M. Dorsa, B. P. Bullock, R. H. Melloni, Jr., P. R. Dobner and S. E.

Leeman, Distribution of neurotensin/neuromedin N mRNA in rat forebrain: unexpected abundance in hippocampus and subiculum, Proc Natl Acad Sci U S A. 86, 5202-6 (1989).

55. B. Griffond, S. Grillon, J. Duval, C. Colard, C. Jacquemard, A. Deray and D. Fellmann, Occurrence of secretogranin II in the prolactin-immunoreactive neurons of the rat lateral hypothalamus: an in situ hybridization and immunocytochemical study, J Chem Neuroanat. 9, 113-9 (1995).

56. L. Bayer, G. Mairet-Coello, P. Y. Risold and B. Griffond, Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons, Regul Pept. 104, 33-9 (2002).

57. R. M. Lechan and I. M. Jackson, Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary, Endocrinology. 111, 55-65 (1982).

58. O. Johansson, T. Hokfelt and R. P. Elde, Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat, Neuroscience. 13, 265-339 (1984).

59. L. Paut-Pagano, J. L. Valatx, K. Kitahama and M. Jouvet, [Prolactin-secreting neurons in the dorsolateral hypothalamus in Sprague-Dawley rats], C R Acad Sci III. 309, 369-76 (1989).

60. P. Y. Risold, B. Griffond, T. S. Kilduff, J. G. Sutcliffe and D. Fellmann, Preprohypocretin (orexin) and prolactin-like immunoreactivity are coexpressed by neurons of the rat lateral hypothalamic area, Neurosci Lett. 259, 153-6 (1999).

61. S. R. Vincent and H. Kimura, Histochemical mapping of nitric oxide synthase in the rat brain, Neuroscience. 46, 755-84 (1992).

62. D. J. Cutler, R. Morris, M. L. Evans, R. A. Leslie, J. R. Arch and G. Williams, Orexin-A immunoreactive neurons in the rat hypothalamus do not contain neuronal nitric oxide synthase (nNOS), Peptides. 22, 1238 (2001).

63. S. O. Fetissov, Z. Q. Xu, L. C. Byrne, H. Hassani, P. Ernfors and T. Hokfelt, Neuropeptide y targets in the hypothalamus: nitric oxide synthesizing neurons express Y1 receptor, J Neuroendocrinol. 15, 754-60 (2003).

64. T. Hokfelt, O. Johansson, A. Ljungdahl, J. M. Lundberg and M. Schultzberg, Peptidergic neurons, Nature.

65. A. N. van den Pol, J. P. Wuarin and F. E. Dudek, Glutamate, the dominant excitatory transmitter in neuroendocrine regulation, Science. 250, 1276-8 (1990).

66. C. Decavel and A. N. Van den Pol, GABA: a dominant neurotransmitter in the hypothalamus, J Comp

67. E. E. Abrahamson, R. K. Leak and R. Y. Moore, The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems, Neuroreport. 12, 435-40 (2001).

68. M. Collin, M. Backberg, M. L. Ovesjo, G. Fisone, R. H. Edwards, F. Fujiyama and B. Meister, Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight, Eur J Neurosci. 18, 1265-78 (2003).

69. D. L. Rosin, M. C. Weston, C. P. Sevigny, R. L. Stornetta and P. G. Guyenet, Hypothalamic orexin

(hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2, J Comp Neurol. 465, 593-603 (2003).

70. C. S. Lin, M. A. Nicolelis, J. S. Schneider and J. K. Chapin, A major direct GABAergic pathway from zona incerta to neocortex, Science. 248, 1553-6 (1990).

71. M. Palkovits and H. Van Cuc, Quantitative light and electron microscopic studies on the lateral hypothalamus in rat. Cell and synaptic densities, Brain Res Bull. 5, 643-7 (1980).

72. K. M. Knigge, D. Baxter-Grillo, J. Speciale and J. Wagner, Melanotropic peptides in the mammalian brain:

the melanin-concentrating hormone, Peptides. 17, 1063-73 (1996).

73. F. C. Barone, M. J. Wayner, S. L. Scharoun, R. Guevara-Aguilar and H. U. Aguilar-Baturoni, Afferent connections to the lateral hypothalamus: a horseradish peroxidase study in the rat, Brain Res Bull. 7, 75-88 (1981).

74. H. Kita and Y. Oomura, An HRP study of the afferent connections to rat lateral hypothalamic region, Brain

75. Y. Date, Y. Ueta, H. Yamashita, H. Yamaguchi, S. Matsukura, K. Kangawa, T. Sakurai, M. Yanagisawa and M. Nakazato, Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems, Proc Natl Acad Sci U S A. 96, 748-53 (1999).

76. A. N. van den Pol, C. Acuna-Goycolea, K. R. Clark and P. K. Ghosh, Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection, Neuron. 42, 635-52 (2004).

77. J. H. Zhang, S. Sampogna, F. R. Morales and M. H. Chase, Orexin (hypocretin)-like immunoreactivity in the cat hypothalamus: a light and electron microscopic study, Sleep. 24, 67-76 (2001).

78. P. Trivedi, H. Yu, D. J. MacNeil, L. H. Van der Ploeg and X. M. Guan, Distribution of orexin receptor mRNA in the rat brain, FEBSLett. 438, 71-5 (1998).

79. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, R. M. Chemelli, C. B. Saper, M. Yanagisawa and J. K. Elmquist,

Differential expression of orexin receptors 1 and 2 in the rat brain, J Comp Neurol. 435, 6-25 (2001).

80. G. J. Hervieu, J. E. Cluderay, D. C. Harrison, J. C. Roberts and R. A. Leslie, Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord, Neuroscience. 103, 777-97 (2001).

81. M. Bäckberg, G. Hervieu, S. Wilson and B. Meister, Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake, Eur J Neurosci. 15, 315-28 (2002).

82. A. W. Sailer, H. Sano, Z. Zeng, T. P. McDonald, J. Pan, S. S. Pong, S. D. Feighner, C. P. Tan, T. Fukami,

H. Iwaasa, D. L. Hreniuk, N. R. Morin, S. J. Sadowski, M. Ito, A. Bansal, B. Ky, D. J. Figueroa, Q. Jiang, C. P. Austin, D. J. MacNeil, A. Ishihara, M. Ihara, A. Kanatani, L. H. Van der Ploeg, A. D. Howard and Q. Liu, Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R, Proc Natl Acad Sci U S A. 98, 7564-9 (2001).

83. G. J. Hervieu, J. E. Cluderay, D. Harrison, J. Meakin, P. Maycox, S. Nasir and R. A. Leslie, The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat, Eur J Neurosci. 12, 1194-216 (2000).

84. Y. Saito, M. Cheng, F. M. Leslie and O. Civelli, Expression of the melanin-concentrating hormone (MCH)

receptor mRNA in the rat brain, J Comp Neurol. 435, 26-40 (2001).

85. M. A. Mullett, C. J. Billington, A. S. Levine and C. M. Kotz, Hypocretin I in the lateral hypothalamus activates key feeding-regulatory brain sites, Neuroreport. 11, 103-8 (2000).

86. X. B. Gao and A. N. van den Pol, Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus, J Physiol. 533, 237-52 (2001).

87. X. B. Gao and A. N. van den Pol, Melanin-concentrating hormone depresses L-, N-, and P/Q-type voltage-

dependent calcium channels in rat lateral hypothalamic neurons, J Physiol. 542, 273-86 (2002).

88. X. B. Gao, P. K. Ghosh and A. N. van den Pol, Neurons synthesizing melanin-concentrating hormone identified by selective reporter gene expression after transfection in vitro: transmitter responses, J Neurophysiol. 90, 3978-85 (2003).

89. M. G. Dube, S. P. Kalra and P. S. Kalra, Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action, Brain Res. 842, 473-7 (1999).

90. A. N. van den Pol, X. B. Gao, K. Obrietan, T. S. Kilduff and A. B. Belousov, Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin, J Neurosci. 18, 7962-71 (1998).

91. T. L. Horvath, S. Diano and A. N. van den Pol, Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations, J Neurosci. 19, 1072-87 (1999a).

92. Y. Li, X. B. Gao, T. Sakurai and A. N. van den Pol, Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system, Neuron. 36, 1169-81 (2002).

93. C. B. Saper, T. C. Chou and T. E. Scammell, The sleep switch: hypothalamic control of sleep and wakefulness, Trends Neurosci. 24, 726-31 (2001).

94. C. B. Saper, L. W. Swanson and W. M. Cowan, An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat, J Comp Neurol. 183, 689-706 (1979).

95. J. G. Veening, L. W. Swanson, W. M. Cowan, R. Nieuwenhuys and L. M. Geeraedts, The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components, J Comp Neurol. 206, 82-108 (1982).

96. W. J. S. Krieg, The hypothalamus of the albino rat, J. Comp. Neurol. 55, 12-89 (1932).

97. L. W. Swanson. (1987). The hypothalamus. In The handbook of chemical neuroanatomy (Bjorklund, A.,

Hokfelt, T. & Swanson, L. W., eds.), Vol. 5, "Integrated systems of the CNS", pp. 1-124. Elsevier, Amsterdam.

98. R. B. Simerly. (1995). Anatomical substrates of hypothalamic integration. In The rat nervous system 2 edit.

(Paxinos, G., ed.), pp. 353-376. Academic Press, San Diego.

99. U. Ungerstedt, Is interruption of the nigro-striatal dopamine system producing the "lateral hypothalamus syndrome"?, Acta Physiol Scand. 80, 35A-36A (1970).

100. P. E. Sawchenko, Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in, J Comp Neurol. 402, 435-41 (1998).

101. B. M. Chronwall, Anatomy and physiology of the neuroendocrine arcuate nucleus, Peptides. 6 Suppl 2, 111 (1985).

102. B. J. Everitt, B. Meister, T. Hokfelt, T. Melander, L. Terenius, A. Rokaeus, E. Theodorsson-Norheim, G. Dockray, J. Edwardson, C. Cuello, R. Elde, M. Goldstein, H. Hemmings, C. Ouimet, I. Walaas, P. Greengard, W. Vale, E. Weber, J.-Y. Wu and K.-J. Chang, The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons, Brain Res. 396, 97-155 (1986).

103. C. Broberger and T. Hokfelt, Hypothalamic and vagal neuropeptide circuitries regulating food intake, Physiol Behav. 74, 669-82 (2001).

104. H. J. Grill and J. M. Kaplan, The neuroanatomical axis for control of energy balance, Front Neuroendocrinol. 23, 2-40 (2002).

105. J. W. Olney, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science. 164, 719-21 (1969).

106. J. T. Clark, P. S. Kalra, W. R. Crowley and S. P. Kalra, Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats, Endocrinology. 115, 427-9 (1984).

107. B. G. Stanley, W. Magdalin, A. Seirafi, W. J. Thomas and S. F. Leibowitz, The perifornical area: the major focus of (a) patchily distributed hypothalamic neuropeptide Y-sensitive feeding system(s), Brain Res. 604, 304-17 (1993).

108. R. Poggioli, A. V. Vergoni and A. Bertolini, ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists, Peptides. 7, 843-8 (1986).

109. W. Fan, B. A. Boston, R. A. Kesterson, V. J. Hruby and R. D. Cone, Role of melanocortinergic neurons in feeding and the agouti obesity syndrome, Nature. 385, 165-8 (1997).

110. T. W. Stephens, M. Basinski, P. K. Bristow, J. M. Bue-Valleskey, S. G. Burgett, L. Craft, J. Hale, J. Hoffmann, H. M. Hsiung, A. Kriauciunas and et al., The role of neuropeptide Y in the antiobesity action of the obese gene product, Nature. 377, 530-2 (1995).

111. C. F. Elias, C. Aschkenasi, C. Lee, J. Kelly, R. S. Ahima, C. Bjorbaek, J. S. Flier, C. B. Saper and J. K. Elmquist, Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area, Neuron. 23, 775-86 (1999).

112. T. L. Horvath, I. Bechmann, F. Naftolin, S. P. Kalra and C. Leranth, Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations, Brain Res. 756, 283-6 (1997).

113. M. L. Ovesjo, M. Gamstedt, M. Collin and B. Meister, GABAergic nature of hypothalamic leptin target neurons in the ventromedial arcuate nucleus, J Neuroendocrinol. 13, 505-16 (2001).

114. F. L. Bai, M. Yamano, Y. Shiotani, P. C. Emson, A. D. Smith, J. F. Powell and M. Tohyama, An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat, Brain Res. 331, 172-5 (1985).

115. P. E. Sawchenko, L. W. Swanson, R. Grzanna, P. R. Howe, S. R. Bloom and J. M. Polak, Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus, J Comp Neurol. 241, 138-53 (1985).

116. T. M. Hahn, J. F. Breininger, D. G. Baskin and M. W. Schwartz, Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons, Nat Neurosci. 1, 271-2 (1998).

117. J. L. Guan, T. Saotome, Q. P. Wang, H. Funahashi, T. Hori, S. Tanaka and S. Shioda, Orexinergic innervation of POMC-containing neurons in the rat arcuate nucleus, Neuroreport. 12, 547-51 (2001).

118. M. Niimi, M. Sato and T. Taminato, Neuropeptide Y in central control of feeding and interactions with orexin and leptin, Endocrine. 14, 269-73 (2001).

119. M. R. Jain, T. L. Horvath, P. S. Kalra and S. P. Kalra, Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats, Regul Pept. 87, 19-24 (2000).

120. A. Yamanaka, K. Kunii, T. Nambu, N. Tsujino, A. Sakai, I. Matsuzaki, Y. Miwa, K. Goto and T. Sakurai, Orexin-induced food intake involves neuropeptide Y pathway, Brain Res. 859, 404-9 (2000).

121. D. A. Ewald, P. C. Sternweis and R. J. Miller, Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons, Proc Natl Acad Sci U S A. 85, 3633-7 (1988).

122. Q. Q. Sun, J. R. Huguenard and D. A. Prince, Neuropeptide Y receptors differentially modulate G-protein-activated inwardly rectifying K+ channels and high-voltage-activated Ca2+ channels in rat thalamic neurons, J Physiol. 531, 67-79 (2001).

123. H. Zheng, M. M. Corkern, S. M. Crousillac, L. M. Patterson, C. B. Phifer and H. R. Berthoud, Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP, Am J Physiol Regul Integr Comp Physiol. 282, R1773-81 (2002).

124. B. Beck, S. Richy, T. Dimitrov and A. Stricker-Krongrad, Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats, Biochem Biophys Res Commun. 286, 518-23 (2001).

125. R. Hanada, M. Nakazato, S. Matsukura, N. Murakami, H. Yoshimatsu and T. Sakata, Differential regulation of melanin-concentrating hormone and orexin genes in the agouti-related protein/melanocortin-4 receptor system, Biochem Biophys Res Commun. 268, 88-91 (2000).

126. C. Broberger, J. Johansen, C. Johansson, M. Schalling and T. Hokfelt, The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice, Proc Natl Acad Sci U S A. 95, 15043-8 (1998b).

127. A. G. Watts, Understanding the neural control of ingestive behaviors: helping to separate cause from effect with dehydration-associated anorexia, Horm Behav. 37, 261-83 (2000).

128. H. R. Berthoud, Multiple neural systems controlling food intake and body weight, Neurosci Biobehav Rev. 26, 393-428 (2002).

129. R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton, Adapative mixtures of local experts, Neuronal Comput. 3, 79-87 (1991).

130. A. M. Graybiel, T. Aosaki, A. W. Flaherty and M. Kimura, The basal ganglia and adaptive motor control, Science. 265, 1826-31 (1994).

131. D. L. Margules and J. Olds, Identical "feeding" and "rewarding" systems in the lateral hypothalamus of rats, Science. 135, 374-5 (1962).

132. G. E. Hermann and R. C. Rogers, Convergence of vagal and gustatory afferent input within the parabrachial nucleus ofthe rat, JAuton Nerv Syst. 13, 1-17 (1985).

133. L. W. Swanson and G. D. Petrovich, What is the amygdala?, TrendsNeurosci. 21, 323-31 (1998).

134. H. Herbert, M. M. Moga and C. B. Saper, Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat, J Comp Neurol. 293, 540-80 (1990).

135. G. J. Ter Horst, P. de Boer, P. G. Luiten and J. D. van Willigen, Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat, Neuroscience. 31, 785-97 (1989).

136. R. Y. Moore and V. B. Eichler, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Res. 42, 201-6 (1972).

137. F. K. Stephan and I. Zucker, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions, Proc Natl Acad Sci U S A. 69, 1583-6 (1972).

138. R. M. Buijs and A. Kalsbeek, Hypothalamic integration of central and peripheral clocks, Nat Rev Neurosci. 2, 521-6 (2001).

139. A. G. Watts, L. W. Swanson and G. Sanchez-Watts, Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat, J Comp Neurol. 258, 204-29 (1987).

140. S. Taheri, D. Sunter, C. Dakin, S. Moyes, L. Seal, J. Gardiner, M. Rossi, M. Ghatei and S. Bloom, Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system, Neurosci Lett. 279, 109-12 (2000).

141. Y. Yoshida, N. Fujiki, T. Nakajima, B. Ripley, H. Matsumura, H. Yoneda, E. Mignot and S. Nishino, Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities, Eur J Neurosci. 14, 1075-81 (2001).

142. S. Zhang, J. M. Zeitzer, Y. Yoshida, J. P. Wisor, S. Nishino, D. M. Edgar and E. Mignot, Lesions of the Suprachiasmatic Nucleus Eliminate the Daily Rhythm of Hypocretin-1 Release, Sleep. 27, 619-627 (2004).

143. R. M. Buijs, Y. X. Hou, S. Shinn and L. P. Renaud, Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus, J Comp Neurol. 340, 381-91 (1994).

144. J. Lu, Y. H. Zhang, T. C. Chou, S. E. Gaus, J. K. Elmquist, P. Shiromani and C. B. Saper, Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation, J Neurosci. 21, 4864-74 (2001).

145. H. Kita and Y. Oomura, An anterograde HRP study of retinal projections to the hypothalamus in the rat, Brain Res Bull. 8, 249-53 (1982b).

146. J. E. Sherin, P. J. Shiromani, R. W. McCarley and C. B. Saper, Activation of ventrolateral preoptic neurons during sleep, Science. 271, 216-9 (1996).

147. J. E. Sherin, J. K. Elmquist, F. Torrealba and C. B. Saper, Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat, J Neurosci. 18, 4705-21 (1998).

148. T. C. Chou, A. A. Bjorkum, S. E. Gaus, J. Lu, T. E. Scammell and C. B. Saper, Afferents to the ventrolateral preoptic nucleus, J Neurosci. 22, 977-90 (2002).

149. S. Satoh, H. Matsumura, A. Fujioka, T. Nakajima, T. Kanbayashi, S. Nishino, Y. Shigeyoshi and H. Yoneda, FOS expression in orexin neurons following muscimol perfusion of preoptic area, Neuroreport. 15, 1127-31 (2004).

150. P. G. Luiten and P. Room, Interrelations between lateral, dorsomedial and ventromedial hypothalamic nuclei in the rat. An HRP study, Brain Res. 190, 321-32 (1980).

151. R. H. Thompson and L. W. Swanson, Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat, Brain Res Brain Res Rev. 27, 89118 (1998).

152. L. L. Bernardis and L. L. Bellinger, The dorsomedial hypothalamic nucleus revisited: 1998 update, Proc Soc Exp Biol Med. 218, 284-306 (1998).

153. T. C. Chou, T. E. Scammell, J. J. Gooley, S. E. Gaus, C. B. Saper and J. Lu, Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms, J Neurosci. 23, 10691-702 (2003).

154. G. J. Ter Horst and P. G. Luiten, Phaseolus vulgaris leuco-agglutinin tracing of intrahypothalamic connections of the lateral, ventromedial, dorsomedial and paraventricular hypothalamic nuclei in the rat, Brain Res Bull. 18, 191-203 (1987).

155. T. L. Horvath, C. Peyron, S. Diano, A. Ivanov, G. Aston-Jones, T. S. Kilduff and A. N. van Den Pol, Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system, J Comp Neurol. 415, 145-59 (1999b).

156. R. J. Liu, A. N. van den Pol and G. K. Aghajanian, Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions, J Neurosci. 22, 9453-64 (2002).

157. E. Mignot, S. Taheri and S. Nishino, Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders, Nat Neurosci. 5 Suppl, 1071-5 (2002).

158. J. G. Sutcliffe and L. de Lecea, The hypocretins: setting the arousal threshold, Nat Rev Neurosci. 3, 339-49 (2002).

159. B. Falck, N. A. Hillarp, G. Thieme and A. Torp, Fluorescence of catechol amines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10, 348-354 (1962).

160. N. E. Anden, A. Dahlstrom, K. Fuxe and K. Larsson, Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon, Life Sci. 4, 1275-9 (1965).

161. K. Fuxe, Evidence for the Existence of Monoamine Neurons in the Central Nervous System. 3. The Monoamine Nerve Terminal, Z Zellforsch Mikrosk Anat. 65, 573-96 (1965).

162. L. W. Swanson and B. K. Hartman, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker, J Comp Neurol. 163, 467-505 (1975).

163. S. F. Leibowitz and L. L. Brown, Histochemical and pharmacological analysis of catecholaminergic projections to the perifornical hypothalamus in relation to feeding inhibition, Brain Res. 201, 315-45 (1980).

164. B. A. Baldo, R. A. Daniel, C. W. Berridge and A. E. Kelley, Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress, J Comp Neurol. 464, 220-37 (2003).

165. S. F. Leibowitz, M. Jhanwar-Uniyal, B. Dvorkin and M. H. Makman, Distribution of alpha-adrenergic, beta-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat, Brain Res. 233, 97-114 (1982).

166. A. Yamanaka, Y. Muraki, N. Tsujino, K. Goto and T. Sakurai, Regulation of orexin neurons by the monoaminergic and cholinergic systems, Biochem Biophys Res Commun. 303, 120-9 (2003b).

167. T. Hokfelt, K. Fuxe, M. Goldstein and O. Johansson, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, 66, 235-251 (1974).

168. H. W. Steinbusch and R. Nieuwenhuys, Localization of serotonin-like immunoreactivity in the central nervous system and pituitary of the rat, with special references to the innervation of the hypothalamus, Adv Exp Med Biol. 133, 7-35 (1981).

169. M. Collin, M. Backberg, K. Onnestam and B. Meister, 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control, Neuroreport. 13, 945-51 (2002).

170. A. Gutierrez, G. Saracibar, L. Casis, E. Echevarria, V. M. Rodriguez, M. T. Macarulla, L. C. Abecia and M. P. Portillo, Effects of fluoxetine administration on neuropeptide y and orexins in obese zucker rat hypothalamus, Obes Res. 10, 532-40 (2002).

171. M. el Mansari, K. Sakai and M. Jouvet, Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats, Exp Brain Res. 76, 519-29 (1989).

172. C. Peyron, J. Faraco, W. Rogers, B. Ripley, S. Overeem, Y. Charnay, S. Nevsimalova, M. Aldrich, D. Reynolds, R. Albin, R. Li, M. Hungs, M. Pedrazzoli, M. Padigaru, M. Kucherlapati, J. Fan, R. Maki, G. J. Lammers, C. Bouras, R. Kucherlapati, S. Nishino and E. Mignot, A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains, Nat Med. 6, 991-7 (2000).

173. T. C. Thannickal, R. Y. Moore, R. Nienhuis, L. Ramanathan, S. Gulyani, M. Aldrich, M. Cornford and J. M. Siegel, Reduced number of hypocretin neurons in human narcolepsy, Neuron. 27, 469-74 (2000).

174. J. H. Haring and J. N. Davis, Acetylcholinesterase neurons in the lateral hypothalamus project to the spinal cord, Brain Res. 268, 275-83 (1983).

175. L. Bayer, P. Y. Risold, B. Griffond and D. Fellmann, Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections, Neuroscience. 91, 1087-101 (1999).

176. M. Yamada, T. Miyakawa, A. Duttaroy, A. Yamanaka, T. Moriguchi, R. Makita, M. Ogawa, C. J. Chou, B. Xia, J. N. Crawley, C. C. Felder, C. X. Deng and J. Wess, Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean, Nature. 410, 207-12 (2001).

177. H. Haas and P. Panula, The role of histamine and the tuberomamillary nucleus in the nervous system, Nat Rev Neurosci. 4, 121-30 (2003).

178. T. Watanabe, Y. Taguchi, S. Shiosaka, J. Tanaka, H. Kubota, Y. Terano, M. Tohyama and H. Wada, Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker, Brain Res. 295, 13-25 (1984).

179. D. A. McCormick and A. Williamson, Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal, J Neurosci. 11, 3188-99 (1991).

180. K. H. Lee, C. Broberger, U. Kim and D. A. McCormick, Histamine modulates thalamocortical activity by activating a chloride conductance in ferret perigeniculate neurons, Proc Natl Acad Sci U S A. 101, 671621 (2004).

181. G. J. Mogenson, L. W. Swanson and M. Wu, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat, J Neurosci. 3, 189-202 (1983).

182. L. Heimer, D. S. Zahm, L. Churchill, P. W. Kalivas and C. Wohltmann, Specificity in the projection patterns of accumbal core and shell in the rat, Neuroscience. 41, 89-125 (1991).

183. C. S. Maldonado-Irizarry, C. J. Swanson and A. E. Kelley, Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus, J Neurosci. 15, 6779-88 (1995).

184. B. A. Baldo, L. Gual-Bonilla, K. Sijapati, R. A. Daniel, C. F. Landry and A. E. Kelley, Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment, Eur J Neurosci. 19, 376-86 (2004).

185. H. Zheng, M. Corkern, I. Stoyanova, L. M. Patterson, R. Tian and H. R. Berthoud, Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons, Am J Physiol Regul Integr Comp Physiol. 284, R1436-44 (2003).

186. A. E. Kelley, Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning, Neurosci Biobehav Rev. 27, 765-76 (2004).

187. H. Kita and Y. Oomura, Reciprocal connections between the lateral hypothalamus and the frontal complex in the rat: electrophysiological and anatomical observations, Brain Res. 213, 1-16 (1981).

188. R. M. Beckstead, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J Comp Neurol. 184, 43-62 (1979).

189. M. Steriade, D. A. McCormick and T. J. Sejnowski, Thalamocortical oscillations in the sleeping and aroused brain, Science. 262, 679-85 (1993).

190. A. Yamanaka, C. T. Beuckmann, J. T. Willie, J. Hara, N. Tsujino, M. Mieda, M. Tominaga, K. Yagami, F. Sugiyama, K. Goto, M. Yanagisawa and T. Sakurai, Hypothalamic orexin neurons regulate arousal according to energy balance in mice, Neuron. 38, 701-13 (2003a).

The Most Important Guide On Dieting And Nutrition For 21st Century

The Most Important Guide On Dieting And Nutrition For 21st Century

A Hard Hitting, Powerhouse E-book That Is Guaranteed To Change The Way You Look At Your Health And Wellness... Forever. Everything You Know About Health And Wellness Is Going To Change, Discover How You Can Enjoy Great Health Without Going Through Extreme Workouts Or Horrendous Diets.

Get My Free Ebook

Post a comment