Cerebral Circulation

When the brain is deprived of oxygen for just a few seconds, a person loses consciousness; irreversible brain injury may occur after a few minutes. For these reasons, the cerebral blood flow is held remarkably constant at about 750 ml per minute. This amounts to about 15% of the total cardiac output at rest.

Unlike the coronary and skeletal muscle blood flow, cerebral blood flow is not normally influenced by sympathetic nerve activity. Only when the mean arterial pressure rises to about 200 mmHg do sympathetic nerves cause a significant degree of vasoconstriction in the cerebral circulation. This vasoconstriction helps to protect small, thin-walled arterioles from bursting under the pressure, and thus helps to prevent cerebrovascular accident (stroke).

In the normal range of arterial pressures, cerebral blood flow is regulated almost exclusively by local intrinsic mechanisms—a process called autoregulation, as previously mentioned. These mechanisms help to ensure a constant rate of blood flow despite changes in systemic arterial pressure. The autoregulation of cerebral blood flow is achieved by both myogenic and metabolic mechanisms.

Was this article helpful?

0 0
Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


Post a comment