Before And After Compost Ammendments
Figure 17.5 Compost. Left. Garbage and leaves before composting. Right. After composting.

changed into compost, a dark, fluffy material that conditions and enriches soil when mixed with it. Today, the compost pile is at the heart of the activities of numerous organic gardeners and farmers. With many communities instituting ordinances forbidding the burning of leaves and refuse, and with space for waste disposal becoming scarce, a significant number of cities and towns have turned to the composting of street leaves and other materials. They have found that they not only save space but also are producing a useful, ecologically compatible product (Fig. 17.5).

Because bacteria are ubiquitous, a single leaf or nonliving tissues in a pile of any size will eventually be decomposed. Ideally, however, a compost pile is 2 meters wide, 1.5 meters deep, and at a minimum, 2 meters long (6 feet wide, 4.5 feet deep, and at least 6 feet long). If the pile is of lesser length or breadth, or greater depth, the conditions that favor the breakdown of materials (created by the bacteria themselves) develop at a slower pace.

Any accumulation of household garbage, leaves, weeds, grass clippings, and/or manure may be heaped together (Fig. 17.5), and it has been demonstrated that no so-called starter culture of microorganisms is needed to initiate decomposition. Once the ever-present decay organisms have material to decompose, their numbers increase rapidly, and much heat is generated. In fact, the temperature in the center of the pile often rises to 70°C (158°F). As it rises, populations of organisms adapted to higher temperatures replace those not as well-adapted. The remains of the latter are then added to the compost. The high temperatures also kill many weed seeds and most disease organisms.

The proportion of carbon to nitrogen present in a compost pile largely determines the pace at which the microbial activities proceed, a ratio of 30 carbon to 1 nitrogen being optimal. Microbial growth stops if the proportion of carbon gets much greater, and nitrogen is lost in the form of ammonia if the ratio drops lower.

If the materials are kept moist and turned occasionally to aerate the pile, composting may be completed in as little as 2 weeks. Shredding the materials exposes much more surface area for the microorganisms to work on and speeds up the process. Composters generally avoid or keep to a minimum a few materials, such as Eucalyptus and walnut leaves, which contain substances that inhibit the growth of other plants, when the compost is intended for use as a soil conditioner or crop fertilizer. Bamboo and some types of fern fronds are particularly resistant to decay bacteria and will decompose much more slowly than other materials. Domestic cat manure may contain stages of a parasite that can infect humans, although the organism should be killed if proper composting techniques are employed. Generally, however, almost any organic materials are suitable. Although compost adds humus to the soil and improves soil structure and moisture-holding capacity, its value as a fertilizer has certain limitations. The nitrogen content of good compost is about 2% to 3%, phosphorus 0.5% to 1%, and potash 1% to 2%, as compared with five to ten times those amounts in chemical fertilizers, which also require less labor to produce. Nevertheless, with the spiraling costs of chemical fertilizers, an increasing awareness of the problems accompanying their use, and greater public enlightenment concerning the accumulation and disposal of solid wastes, compost is undoubtedly destined to play a major role in pertinent agricultural practices of the future.

Was this article helpful?

0 0
Organic Gardeners Composting

Organic Gardeners Composting

Have you always wanted to grow your own vegetables but didn't know what to do? Here are the best tips on how to become a true and envied organic gardner.

Get My Free Ebook

Post a comment