Analysis, as described in the Subheading 3.1. is performed, and followed by addition of the ATP standard for internal calibration.

After copmleting Subheading 3.1., step 7 add 10 ||L reconstituted ATP standard (10-6 M), mix quickly, place the cuvet back into the measurement chamber and measure light output. Increased response (IR) is given in RLU, which corresponds directly to the ATP level present in the sample and the ATP standard. ATP content in test is calculated by using RLU values of the baseline subtracted from those measured upon addition of the ATP monitoring reagent (R) and those measured upon addition of the ATP standard (IR). The formula to calculate the biomass concentration is samples containing immobilized cells is as follows:

ATP cont.

mg g

where R is a response value of the sample in RLU; IR is an increased response value of the sample + ATP standard in RLU; cs is the ATP standard concentration (10-6 mol/L for the ATP standard contained in the kit) and m is weight of the gel beads in grams (g).

4. Notes

1. Reagents for bioluminometric analysis must be reconstituted prior to the analysis. Follow kit instructions on how to reconstitute the reagents contained in the kit.

2. Reagents other than those delivered by Bio-Orbit may also be used. We have obtained good results using Microbial Biomass Kit (Celsis, Newmarket, UK).

3. Disposable cuvettes and pipette tips are advised to use to avoid introducing foreign nucleotides into the sample.

4. The amount of immobilized cells used may differ according to the type of cells used. Estimation of the span may be required prior to the analysis.


1. D'Souza, S. F. (2001) Microbial biosensors. Biosens. Bioelectron. 16, 337-353.

2. Chapelle, E. W., Picciollo, G. L., and Deming, J. W. (1978) Determination of bacterial content in fluids. In: Methods in Enzymology, vol. 57 (DeLuca, M. A., ed.) Academic Press, Orlando, FL, pp. 65.

3. Miyahira, Y. and Takeuchi, T. (1991) Application of ATP measurement to evaluation of the growth of parasitic protozoa in vitro with a special reference to Pneumocystis carinii. Comp. Biochem. Physiol. 100A, 1031-1034.

4. Prioli, R. P., Tana, A., and Brown, I. N. (1985) Rapid methods for counting mycobacteria—Comparison of methods for extraction of mycobacterial adenosine-triphosphate (ATP) determined by firefly luciferase assay. Tubercle 66, 99-108.

5. Navratil, M., Dömeny, Z., Hronsky, V., Sturdik, E., Smogrovicova, D., Gemeiner, P. (2001) Use of bioluminometry for determination of active yeast biomass immobiilized in ionotropic hydrogels. Anal. Biochem. 284, 394-400.

6. Bonomi, C. A., Borgel, S. D., Carter, J. P., et al. (2003) Multi-fold improvements in tumor cell detection and drug screening sensitivity using luciferase based technology. Clin. Cancer Res. 9, 6217.

7. Stanley, P. E. (2000) Commercially available luminometers and low-level ligh imaging devices. In: Methods in Enzymology, vol, 305 (Ziegler, M. M., Baldwin, T. O. , eds.) Academic Press, Orlando, FL, pp. 96-103.

8. Unge, A., Tombolini, R., M0lbak, L., and Jansson, J. K. (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol. 65, 813-821.

9. Gikas, P. and Livingston, A. G. (1996) Viability of immobilised cells: Use of specific ATP levels and oxygen uptake rates. In: Immobilized Cells: Basics and Applications (Wijffels, R. H., Buitelaar, R. M., Bucke, C., and Tramper, eds.) Elsevier Science, Amsterdam, pp. 264-271.

10. Wijffels, R. H., de Gooijer, C. D., Kortekaas, S., and Tranper J. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 2. Model evaluation. Biotechnol. Bioeng. 38, 232-240.

11. Kurosawa, H., Matsumura, M., and Tanaka, H. (1989) Oxygen diffusivity in gel beads containing viable cells. Biotechnol. Bioeng. 34, 926-932.

12. Gikas, P. and Livingston, A. G. (1993) Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors. Biotechnol. Bioeng. 42,1337-1351.

13. Selifonova, O., Burlage, R., and Barkay, T. (1993) Bioluminescent sensors for detection of bioavailable Hg(2) in the environment. Appl. Environ. Microbiol. 59, 3083-3090.

14. Erbe, J. L., Adams, A. C., Raylor, K. B., and Hall, L. M. (1996) Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for detection of heavy metal cations. J. Ind. Microbiol. 17, 80-83.

15. Chun, U. H., Simonov, N., Chen, Y., and Britz, M. L. (1996) Continuous pollution monitoring using Photobacterium phosphoreum. Resour. Conserv. Recycl. 18, 25-40.

16. Valtonen, S. J., Kurittu, J. S., and Karp, M. T. (2002) A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams, J. Biomol. Screen. 7, 127-134.

17. Gu, M. B. and Chang, S. T. (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant, Biosens. Bioelectron. 16, 667-674.

18. Lee, H. J., Villaume, J., Cullen, D. C., Kim, B. C., and Gu, M. B. (2003) Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria, Biosens. Biolectron. 18, 571-577.

19. Polyak, B., Bassis, E., Novodvorets, A., Belkin, S., and Marks, R. S. (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization , Sens. Actuator B-Chem. 74, 18-26.

20. Leth, S., Maltoni, S., Simkus, R., et al. (2002) Engineered bacteria based biosensors for bioavailable heavy metals, Electroanal. 14, 35-42.

21. Shao, C. Y., Howe, C. J., Porter, A. R. J., and Glover, L. A. (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl. Environ. Microbiol. 68, 5026-5033.

22. Kim, B. C., Park, K. S., Kim, S. D., and Gu, M. B. (2003) Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay, Biosens. Bioelectron. 18, 821-826.

23. Kim, B. C. and Gu, M. B. (2003) A bioluminescent sensor for high throughput toxicity classification, Biosens. Bioelectron. 18, 1015-1021.

24. Werlen, C., Jaspers, M. C. M., and van der Meer, J. R. (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor, Appl. Environ. Microbiol. 70, 43-51.

25. Gil, G. C., Kim, Y. J., and Gu, M. B. (2002) Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium. Biosens. Bioelectron. 17, 427-432.

26. Steinberg, S. M., Poziomek, E. J., and Engelman, W. H. (1994) A review of the applications of luminescence to monitoring of chemical contaminants in the environment, Chemosphere 28, 1819-1857.

27. Steinberg, S. M., Poziomek, E. J., Engelman, W. H., and Rogers, K. R. (1995) A review of environmental applications of bioluminescence measurements, Chemosphere 30,2155-2197.

28. Blyth, D. J., Poynter, S. J., and Russel, D. A. (1996) Calcium biosensing with a sol-gel immobilized photoprotein. Analyst 121, 1975-1978.

29. Chittock, R. S., Cooper, J., Wharton, C. W., et al. (1996) Micrometre-scale bioluminescent enzyme photopatterning for bioelectronics applications. Thin Solid Films 285, 776-779.

30. Michel, P. E., Gautier, S. M., and Blum, L. J. (1996) Effect of compartmentaliza-tion of the sensign layer on the sensitivity of a multienzyme-based bioluminescent sensor for L-lactate. Anal. Lett. 29, 1139-1155.

31. Blum, L. J., Gautier, S. M., and Coulet, P. R. (1991) Fiber optic biosensor with immobilized bioluminescence enzymes. J. Mater. Sci.-Mater. Med. 2, 202-204.

32. Blum, L. J., Gautier, S. M., and Coulet, P. R. (1993) Design of bioluminescence-based fiber optic sensors for flow-injection analysis. J. Biotechnol. 31, 357-368.

Was this article helpful?

0 0
Detoxify the Body

Detoxify the Body

Need to Detoxify? Discover The Secrets to Detox Your Body The Quick & Easy Way at Home! Too much partying got you feeling bad about yourself? Or perhaps you want to lose weight and have tried everything under the sun?

Get My Free Ebook

Post a comment