MUP-^ MUF (methylumbelliferone) + P

AP activity can easily be measured by measuring the MUF production at fluorescence emission of 460 nm under excitation light of 350 nm.

The second type biosensor however, is based on algal chlorophyll fluorescence measurement at excitation of 482 nm and emission of 683 nm.

5. The substrate MUP was placed in the Tris buffer solution (0.1 M, pH 8.5) containing 1 mM MgCl2 as enzyme activator, and AP activity was measured in terms of fluorescence intensity.

6. AP activity can also be measured with another substrate, p-nitrophenyl phosphate (pNPP). But preference should be given to MUP for its higher sensitivity.

7. After running the toxic solutions in the biosensor, it should be clean thoroughly and reversibility of the biosensor should be tested by running the reference solution each time.


I would like to thank Mr. Laxuman Sharma and Mr. Akhilesh Kumar Singh for their kind technical assistance.


1. Lipkin, Y. (1985) Outdoor cultivation of sea vegetables. Plant Soil 89, 159-183.

2. Avila, M. and Seguel, M. (1993) An overview of seaweed resources in Chile. J. Appl. Phycol. 5, 133-139.

3. Merrill, J. E. (1993) Development of Nori markets in the Western World. J. Appl. Phycol. 5, 149-154.

4. Sahoo, D., Tang, X., and Yarish, C. (2002) Porphyra- the economic seaweed as a new experimental system. Curr. Sci. 83, 1313-1316.

5. Martinez, M. R., Palacpac, N. Q., Guevarra, H. T., and Boussiba, S. (1995) Production of indigenous nitrogen fixing blue-green algae in paddy fields of the Philippines. In: Mass cultures of Microalgae (Thirakhupt, V. and Boonakijjinda, V., eds.) Proceedings of the Research Seminar and Workshop, Silpakorn University, Thailand, November 18-23, 1991, pp. 51-60.

6. Borowitzka, L. J. and Borowitzka, M. A. (1990) Commercial production of P-carotene by Dunaliella salina in open ponds. Bull. Mar. Sci. 47, 244-252.

7. Belay, A., Ota, Y., Miyakawa, K., and Simamatsu, H. (1994) Production of high quality Spirulina at Earthrise Farms. In: Algal Biotechnology in the Asia-Pacific Region (Phang, S. M., Lee, K., Borowitzka, M. M., and Whitton, B. A., eds.) University of Malay Press, Kuala Lumpur, pp. 92-102.

8. Spoehr, H. A. and Milner, H. W. (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol. 24, 120-129.

9. Laliberte, G., Proulx, D., De Pauw, N., and de la Noue, J. (1994) Algal technology in wastewater treatment. In: Algae and Water Pollution (Rai, L. C., Gaur, J. P. and Soeder, C. J., eds.) E. Schweizerbart'sche Verlagsbuchhanlung, Stuttgart, Germany, pp. 283-302.

10. Cohen, Z. (1999) Chemicals from Microalgae. Taylor & Francis Ltd. London, UK, p. 419.

11. Richmond, A. and Becker, E. W. (1986) Technological aspects of mass cultivation - a general outline. In: Handbook of Microalgal Mass Culture (Richmond, A., ed.) CRC Press Inc., Boca Raton, pp. 245-263.

12. Mohn, F. H. (1988) Harvesting of microalgal biomass. In: Micro-Algal Biotechnology (Borowitzka, M. A. and Borowitzka, L. J., eds.) Cambridge University Press, New York, NY, pp. 395-414.

13. Oswald, W. J. (1988) Micro-algae and waste-water treatment. In: Micro-Algal Biotechnology (Borowitzka, M. A. and Borowitzka, L. J., eds.) Cambridge University Press, New York, NY, pp. 305-328.

14. Bosma, R., Spronsen, W. A., Tramper, J., and Wijffels, R. H. (2003) Ultrasound, a new separation technique to harvest microalgae. J. Appl. Phycol. 15, 143-153.

15. Mallick, N. (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15, 377-390.

16. Brandenberger, H. and Widmer, F. (1998) A new multinozzle encapsulation/immobilization system to produce uniform beads of alginate. J. Biotechnol. 63, 73-80.

17. de- Bashan, L. E., Hernnandez., J.-P., Morey, T., and Bashan, Y. (2004) Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38, 466-474.

18. Naessens, M., Leclerc, J.-C., and Tran-Minh, C. (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol. Environ. Saf. 46, 181-185.

19. Durrieu, C. and Tran-Minh, C. (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 51, 206-209.

20. Vedrine, C., Leclerc, J.-C., Durrieu, C., and Tran-Minh, C. (2003) Optical whole-cell biosensor using Chlorella vugaris designed for monitoring herbicides. Biosens. Bioelect. 18, 457-463.

21. Chouteau, C., Dzyadevych, S., Chovelon, J. -M., and Durrieu, C. (2004) Development of novel conductometric biosensors based on immobilized whole cell Chlorella vulgaris microalgae. Biosens. Bioelect. 19, 1089-1096.

22. Kayno, H., Karube, I., Matsunaga, T., Suzuki, S., and Nakayama, O. (1981) A photochemical fuel cell system using Anabaena N-7363. Eur. J. Microbiol. Biotechnol. 12, 1-5.

23. Brouers, M. and Hall, D. O. (1986) Ammonia and hydrogen production by immobilized cyanobacteria. J. Biotechnol. 3, 307-321.

24. Bailliez, C., Largeau, C., and Casadevall, E. (1985) Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Appl. Microbiol. Biotechnol. 23, 99-105.

25. Santos-Rosa, F., Galvan, F., and Vega, J. M. (1989) Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: a reactor feasibility study. Appl. Microbiol. Biotechnol. 32, 285-290.

26. Vilchez, C., Galvan, F., and Vega, J. M. (1991) Glycolate photoproduction by free and alginate-entrapped cells of Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 35, 716-719.

27. Leon, R. and Galvan, F. (1995) Glycerol photoproduction by free and calcium-entrapped cells of Chlamydomonas reinhardtii. J. Biotechnol. 42, 61-67.

28. Scholz, W., Galvan, F., and de la Rosa, F. F. (1995) The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction: comparison between free and immobilized cells and thylakoids for energy conversion efficiency. Sol. Ener. Mat. Sol. Cells 39, 61-69.

29. Roncel, M., Navarro, J. A., and de la Rosa, M.A. (1989). Coupling of solar energy to hydrogen peroxide production in the cyanobacterium Anacystis nidulans. Appl. Environ. Microbiol. 55, 483-487.

30. Morales, I. and de la Rosa, F. F. (1992) Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: a way to solar energy conversion. Sol. Ener. 49, 41-46.

31. Rossignol, N., Lebeau, T., Jaouen, P., and Robert, J. M. (2000) Comparision of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by marine diatoms. Biopro. Eng. 23, 495-501.

32. Lebeau, T., Gaudin, P., Moan, R., and Robert, J.-M (2002) A new photobioreactor for continuous marennin production with a marine diatom: influence of light intensity and the immobilized-cell matrix (alginate beads or agar layer). Appl. Microbiol. Biotechnol. 59, 153-159.

33. Singh, Y. (2003) Photosynthetic activity, and lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus in relation to growth phase. J. Microbiol. Biotechnol. 13, 687-691.

34. Jeanfils, J. and Thomas, D. (1986) Culture and nitrite uptake in immobilized Scenedesmus obliquus. Appl. Microbiol. Biotechnol. 24, 417-422.

35. Megharaj, M., Pearson, H. W., and Venkateswarlu, K. (1992) Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb. Technol. 14, 656-658.

36. Robinson, P. K. (1995) Effect of pre-immobilization conditions on phosphate uptake by immobilized Chlorella. Biotechnol. Lett. 17, 659-662.

37. Urrutia, I., Serra, J. L., and Lama, M. J. (1995) Nitrate removal from water by Senedesmus obliquus immobilized in polymeric foams. Enzyme Microb. Technol. 17, 200-205.

38. Rai, L. C. and Mallick, N. (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J. Microbiol. Biotechnol. 8, 110-114.

39. Mallick, N. and Rai, L. C. (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J. Microbiol. Biotechnol. 9, 196-201.

40. Mallick, N. and Rai, L. C. (1994) Removal of inorganic ions from wastewater by immobilized microalgae. World J. Microbiol. Biotechnol. 10, 439-443.

41. Vilchez, C. and Vega, J. M. (1994) Nitrate uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl. Microbiol. Biotechnol. 41, 137-141.

42. Garbisu, C., Hall, D. O., and Serra, J. L. (1993) Removal of phosphate by foam-immobilized Phormidium laminosum. J. Chem. Technol. Biotechnol. 57, 181-189.

43. Kaya, V. M. and Picard, G. (1995) The viability of Scenedesmusbicellulariscells immobilized on alginate screens following nutrient stravation in air at 100% relative humidity. Biotechnol. Bioeng. 46 , 459-464.

44. Kaya, V. M., Goulet, J., de la Noüe, J., and Picard, G. (1996) Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. EnzymeMicrob. Technol. 18, 550554.

45. Robinson, P. K. (1998) Immobilized algal technology for wastewater treatment purposes. In: Wastewater Treatment with Algae (Wong, Y.-S. and Tam, N. F. Y., eds.) Springer-verlag & Landes Bioscience, New York, pp. 1-16.

46. Sawayama, S., Rao, K. K., and Hall, D. O. (1998) Nitrate and phosphate removal from water by Phormidium laminosum immobilized on hallow fibres in a photobioreactor. Appl. Microbiol. Biotechnol. 49, 463-468.

47. de- Bashan, L. E., Bashan, Y., Moreno, M., Lebsky, V. K., and Bustillos, J. J. (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 48, 514-521.

48. Brierley, J. A., Brierley, C. L., and Goyak, G. M. (1986) AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology. In: Foundamental and Applied Biohydrometallurgy (Lawrences, R. W., Branion, R. M. R., and Ebner, H. G., eds.) Elsevier, Amsterdam, pp. 291-304.

49. Wilkinson, S. C., Goulding, K. H., and Robinson, P. K. (1990) Mercury removal by immobilized algae in batch culture sytems. J. Appl. Phycol. 2, 223-230.

50. Darnall, D. W. (1991) Removal and recovery of heavy metal ions from wastewaters using a new biosorbents: AlgaSORB. Innov. Hazard. Waste Treat. Technol. Ser. 3, 65-72.

51. da Costa, A. C. A. and Leite, S. F. G. (1991) Metal biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol. Lett. 13, 559-562.

52. Granham, G. W., Codd, G. A., and Gadd, G. M. (1992) Accumulation of cobalt, zinc and manganese by the esturine green microalga Chlorella salina immobilized in alginate microbeads. Environ. Sci. Tech. 26, 1764-1770.

53. Avery, S. V., Codd, G. A., and Gadd, G. M. (1993) Salt-stimulation of caesium accumulation in the euryhaline green microalga, Chlorella salina: potential relevance to the development of a biological Cs-removal process. J. Gen. Microbiol. 139, 2239-2244.

54. Robinson, P. K. and Wilkinson, S. C. (1994) Removal of aqueous mercury and phosphate by gel-entrapped Chlorella in packed-bed reactors. Enzyme Microb. Technol. 16, 802-807.

55. Lau, P. S., Tam, N. F. Y., and Wong, Y. S. (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Biores. Technol. 63, 115-121.

56. Torresdey-Gardea, J. L., Arenas, J. L., Francisco, N. M. C., Tiemann, K. J., and Webb, R. (1998) Ability of immobilized cyanobacteria to remove metal ions from solution and demonstration of the presence of metallothionein genes in various strains. J. Hazard. Subs. Res. 1, 1-18.

57. Tam, N. F. Y., Wong, Y. S., and Simpson, C. G. (1998) Removal of copper by free and immobilized microalga, Chlorella vulgaris. In: Wastewater Treatment with Algae (Wong, Y.-S. and Tam, N. F. Y., eds.) Springer-Verlag & Landes Bioscience, New York, NY, pp. 17-35.

58. Travieso, L., Canizares, R. O., Borja, R., Benitez, F., Dominuez, A. R., Dupeyron, R., and Valiente Y. V. (1999) Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62 , 144-151.

59. Singh, R. and Prasad, B. B. (2000) Trace metal analysis: selective sample (Copper II) enrichment on an AlgaSORB column. Proc. Biochem. 35, 897-905.

60. Moreno-Garrido, I., Codd, G. A., Gadd, G. M., and Lubian, L. M. (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Cienc. Marin. 28, 107-119.

61. Akhtar, N., Saeed, A., and Iqbal, M. (2003a) Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Biores. Technol. 88, 163-165.

62. Akhtar, N., Iqbal, J., and Iqbal, M. (2003b) Microalgal-luffa sponge immobilized disc: a new efficient biosorbent for the removal of Ni (II) from aqueous solution. Lett. Appl. Microbiol. 37, 149-153.

63. Volesky, B. and Prasetyo, I. (1994) Cadmium removal in a biosorption column. Biotechnol. Bioeng. 43, 1010-1015.

64. Pradhan, S., Singh, S., Rai, L. C., and Parker D. L. (1998) Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions. J. Microbiol. Biotechnol. 8, 53-60.

65. Parker, D. L., Rai, L. C., Mallick, N., Rai, P. K., and Kumar, H. D. (1998) Effect of cellular metabolism and viability on metal ion accumulaltion by cultured biomass from a bloom of the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 64, 1545-1547.

66. Wilkstrom, P., Swajcer, E., Brodelius, P., Nilsson, P., and Mosbach, K. (1982) Formation of a-keto acids from amino acids using immobilized bacteria and algae. Biotechnol. Lett. 4, 153-158.

67. Trevan, M. D. and Mak, A. L. (1988) Immobilized algae and their potential for use as biocatalysts. Trends Biotechnol. 6, 68-73.

68. Joo, D. -S., Cho, M. -G., Park, J. -H., Kwak, J.-K, Han, Y.-H., and Bucholz, R. (2001) New strategy for the cultivation of microalgae using microencapsulation. J. Microencap. 18, 567-576.

69. Corbesier, P., Van Der Lelie, D., Borremans, B., Provoost, A., De Lorenzo, V., Brown, N. L., Lloyd, J. R., Csorgi, E., Johansson, G., and Mattiasson, B. (1999) Whole cell and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 387, 235-244.

70. Kim, J.-H., Cho, H. J., Ryu, S.-E., and Choi, M.-U. (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch. Biochem. Biophys. 382 , 72-80.

Was this article helpful?

0 0
Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook

Post a comment