References

Chemo Secrets From a Breast Cancer Survivor

Breast Cancer Survivors

Get Instant Access

1. I. N. Bankman (ed.), Handbook of Medical Imaging: Processing and Analysis (Academic Press, London, UK, 2000).

2. M. Sonka and J. M. Fitzpatrick (eds.), Handbook of Medical Imaging, Volume 2: Medical Image Processing and Analysis (SPIE Press, Bellingham, WA, 2000).

3. Alberta Cancer Board, Alberta, Canada. Screen Test: Alberta Program for the Early Detection of Breast Cancer — 1999/2001 Biennial Report, 2001.

4. Alberta Cancer Board, Alberta, Canada. Screen Test: Alberta Program for the Early Detection of Breast Cancer — http://www.cancerboard.ab.ca/screentest/, 2004.

5. H.-O. Peitgen (ed.), Proceedings of the 6th International Workshop on Digital Mammography, Bremen, Germany (June 2002), Springer-Verlag.

6. H. Alto, R. M. Rangayyan, R. B. Paranjape, J. E. L. Desautels and H. Bryant, An indexed atlas of digital mammograms for computer-aided diagnosis of breast cancer, Annales des Télécommunications 58(5-6) (2003) 820-835.

7. R. M. Rangayyan, N. M. El-Faramawy, J. E. L. Desautels and O. A. Alim, Measures of acutance and shape for classification of breast tumors, IEEE Transactions on Medical Imaging 16(6) (1997) 799-809.

8. R. M. Rangayyan, N. R. Mudigonda and J. E. L. Desautels, Boundary modeling and shape analysis methods for classification of mammographic masses, Medical and Biological Engineering and Computing 38(5) (2000) 487-496.

9. N. R. Mudigonda, R. M. Rangayyan and J. E. L. Desautels, Gradient and texture analysis for the classification of mammographie masses, IEEE Transactions on Medical Imaging 19(10) (2000) 1032-1043.

10. N. R. Mudigonda, R. M. Rangayyan and J. E. L. Desautels, Detection of breast masses in mammograms by density slicing and texture flow-field analysis, IEEE Transactions on Medical Imaging 20(12) (2001) 1215-1227.

11. M. Sameti and R. K. Ward, A fuzzy segmentation algorithm for mammogram partitioning, in 3rd International Workshop on Digital Mammography, eds. K. Doi, M. L. Giger, R. M. Nishikawa and R. A. Schmidt, Chicago, IL (9-12 June 1996), pp. 471-474.

12. C. H. Chen and G. G. Lee, On digital mammogram segmentation and microcalcification detection using multiresolution wavelet analysis, Graphical Models and Image Processing 59(5) (1997) 349-364.

13. L. Shen, R. M. Rangayyan and J. E. L. Desautels, Detection and classification of mammographic calcifications, International Journal of Pattern Recognition and Artificial Intelligence 7(6) (1993) 1403-1416.

14. N. Karssemeijer, Detection of stellate distortions in mammograms using scale-space operators, in Information Processing in Medical Imaging, eds. Y. Bizais, C. Barillot and E. Di Paola, Kluwer Academic Publishers, The Netherlands (1995), pp. 335-346.

15. A. Laine, W. Huda, D. Chen and J. Harris, Segmentation of masses using continous scale representations, in 3rd International Workshop on Digital Mammography, eds. K. Doi, M. L. Giger, R. M. Nishikawa and R. A. Schmidt, Chicago, IL (9-12 June 1996), pp. 447-450.

16. L. Miller and N. Ramsey, The detection of malignant masses by non-linear multi-scale analysis, in 3rd International Workshop on Digital Mammography, eds. K. Doi, M. L. Giger, R. M. Nishikawa and R. A. Schmidt, Chicago, IL (9-12 June 1996), pp. 335-340.

17. M. Zhang, M. L. Giger, C. J. Vyborny and K. Doi, Mammographic texture analysis for the detection of spiculated lesions, in 3rd International Workshop on Digital Mammography, eds. K. Doi, M. L. Giger, R. M. Nishikawa and R. A. Schmidt, Chicago, U.S.A. (9-12 June 1996), pp. 347-350.

18. T. Matsubara, H. Fujita, T. Endo, K. Horita, M. Ikeda, C. Kido and T. Ishigaki, Development of mass detection algorithm based on adaptive thresholding technique in digital mammograms, in 3rd International Workshop on Digital Mammography, eds. K. Doi, M. L. Giger, R. M. Nishikawa and R. A. Schmidt, Chicago, IL (9-12 June 1996), pp. 391-396.

19. M. A. Kupinski and M. L. Giger, Automated seeded lesion segmentation on digital mammograms, IEEE Transactions on Medical Imaging, 17(4) (1998) 510-517.

20. R. P. Nikhil and K. P. Sankar, A review on image segmentation techniques, Pattern Recognition 26(9) (1993) 1277-1294.

21. R. L. Cannon, J. V. Dave and J. C. Bezdek, Fuzzy C-Means clustering algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(2) (1986) 248-255.

22. M. C. Clark, D. B. Hall, D. B. Goldgof, L. P. Clarke, R. P. Velthuizen and M. S. Silbiger, MRI segmentation using fuzzy clustering techniques, IEEE Engineering in Medicine and Biology (November/December 1994), pp. 730-742.

23. D. Guliato, R. M. Rangayyan, J. A. Zuffo and J. E. L. Desautels, Detection of breast tumor boundaries using iso-intensity contours and dynamic thresholding, in 4th International Workshop on Digital Mammography, eds. N. Karssemeijer,

M. Thijssen, J. Mendris and L. van Erning, Nijmegen, The Netherlands (June 1998), Kluwer Academic, Dordrecht, pp. 253-260.

D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo and J. E. L. Desautels, Segmentation of breast tumors in mammograms by fuzzy region growing, in 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong (29 October-1 November 1998), pp. 1002-1004. D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo and J. E. L. Desautels, Segmentation of breast tumors in mammograms using fuzzy sets, Journal of Electronic Imaging 12(3) (2003) 369-378.

A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd edn. (Academic Press, New York, NY, 1982).

R. M. Haralick and L. G. Shapiro, Survey—image segmentation techniques, Computer Vision, Graphics and Image Processing 29 (1985) 100-132.

F. Meyer and S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation 1(1) (1990) 21-46.

H. Asar, N. Nandhakumar and J. K. Aggarwal, Pyramid-based image segmentation using multisensory data, Pattern Recognition 23(6) (1990) 583-593. J. F. Haddon and J. F. Boyce, Image segmentation by unifying region growing and boundary information, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10) (1990) 929-948.

T. Pavlidis and Y.-T. Liow, Integrating region growing and edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(3) (1990) 225-233. L. Vincent and P. Soille, Watershed in digital spaces: An efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6) (1991) 583-598.

Y. Xiaohan and J. Yla-Jaaski, Direct segmentation in 3D and its application to medical images, in Proc. SPIE Image Processing, volume 1898, (1993), pp. 187-192. A. Hadjarian, J. Bala, S. Gutta, S. Trachiots and P. Pachowicz, The fusion of supervised and unsupervised techinques for segmentation of abnormal regions, in 4th International Workshop on Digital Mammography, Nijmegen, The Netherlands (June 1998), Kluwer Academic Publishers, pp. 299-302.

D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo and J. E. L. Desautels, Fuzzy fusion of results of medical image segmentation, in SPIE Conferece on Medical Imaging — Image Processing, volume 3661, San Diego, CA (20-26 February 1999), pp. 1075-1084.

D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo and J. E. L. Desautels, Fuzzy fusion operators to combine results of complementary medical image segmentation techniques, Journal of Electronic Imaging 12(3) (2003) 379-389. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

G. J. Klir and B. Yuon, Fuzzy Sets and Fuzzy Logic (Prentice Hall, Englewood Cliffs, NJ, 1995).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd edn. (Addison-Wesley, MA, 1992).

J. E. Cabral Jr., K. S. White, Y. Kim and E. L. Effmann, Interactive segmentation of brain tumors in MR images using 3D region growing, in Proc. SPIE, Image Processing, volume 1898 (1993), pp. 171-181.

Y. Chang and X. Li, Adaptive region growing, IEEE Transactions on Image Processing 3(6) (1994) 868-872.

D. Guliato, R. M. Rangayyan, F. Adorno and M. M. G. Ribeiro, Analysis and classification of breast masses by fuzzy-set-based image processing, in 6th International Workshop on Digital Mammography, Bremen, Germany (June 2002), pp. 195-197.

43. O. Menut, R. M. Rangayyan and J. E. L. Desautels, Parabolic modeling and classification of breast tumors, International Journal of Shape Modeling 3 (1997) 155-166.

44. R. R. Yager, Connectives and quantifiers in fuzzy sets, Fuzzy Sets and Systems 40 (1991) 39-75.

45. I. Bloch, Information combination operators for data fusion: a comparative review with classification, IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans 26(1) (1996) 52-67.

This page intentionally left blank

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment