Factors That Affect Perception

We put great trust in our sensory-perceptual processes despite the inevitable modifications we know to exist. Some of the following factors are known to affect our perceptions of the real world:

1. Afferent information is influenced by sensory receptor mechanisms (for example by adaptation), and by processing of the information along afferent pathways.

2. Factors such as emotions, personality, experience, and social background can influence perceptions so that two people can witness the same events and yet perceive them differently.

3. Not all information entering the central nervous system gives rise to conscious sensation. Actually, this is a very good thing because many unwanted signals are generated by the extreme

Vander et al.: Human Physiology: The Mechanism of Body Function, Eighth Edition

The Sensory Systems CHAPTER NINE

The Sensory Systems CHAPTER NINE

sensitivity of our sensory receptors. For example, under ideal conditions the rods of the eye can detect the flame of a candle 17 mi away. The hair cells of the ear can detect vibrations of an amplitude much lower than those caused by blood flow through the ears' blood vessels and can even detect molecules in random motion bumping against the ear drum. It is possible to detect one action potential generated by a certain type of mechanoreceptor. Although these receptors are capable of giving rise to sensations, much of their information is canceled out by receptor or central mechanisms, which will be discussed later. In other receptors' afferent pathways, information is not canceled out—it simply does not feed into parts of the brain that give rise to a conscious sensation. For example, stretch receptors in the walls of some of the largest blood vessels monitor blood pressure as part of reflex regulation of this pressure, but people have no conscious awareness of their blood pressure.

4. We lack suitable receptors for many energy forms. For example, we cannot directly detect ionizing radiation and radio or television waves.

5. Damaged neural networks may give faulty perceptions as in the bizarre phenomenon known as phantom limb, in which a limb that has been lost by accident or amputation is experienced as though it were still in place. The missing limb is perceived to be the "site" of tingling, touch, pressure, warmth, itch, wetness, pain, and even fatigue, and it is felt as though it were still a part of "self." It seems that the sensory neural networks in the central nervous system that exist genetically in everyone and are normally triggered by receptor activation are, instead, in the case of phantom limb, activated independently of peripheral input. The activated neural networks continue to generate the usual sensations, which are perceived as arising from the missing receptors. Moreover, somatosensory cortex undergoes marked reorganization after the loss of input from a part of the body so that a person whose arm has been amputated may perceive a touch on the cheek as though it were a touch on the phantom arm; because of the reorganization, the arm area of somatosensory cortex receives input normally directed to the face somatosensory area.

6. Some drugs alter perceptions. In fact, the most dramatic examples of a clear difference between the real world and our perceptual world can be found in illusions and drug- and disease-induced hallucinations, where whole worlds can be created.

In summary, for perception to occur, the three processes involved—transducing stimulus energy into action potentials by the receptor, transmitting data through the nervous system, and interpreting data— cannot be separated. Sensory information is processed at each synapse along the afferent pathways and at many levels of the central nervous system, with the more complex stages receiving input only after it has been processed by the more elementary systems. This hierarchical processing of afferent information along individual pathways is an important organizational principle of sensory systems. As we shall see, a second important principle is that information is processed by parallel pathways, each of which handles a limited aspect of the neural signals generated by the sensory transducers. A third principle is that information at each stage along the pathway is modified by "top-down" influences serving emotions, attention, memory, and language. Every synapse along the afferent pathway adds an element of organization and contributes to the sensory experience so that what we perceive is not a simple—or even an absolutely accurate— image of the stimulus that originally activated our receptors.

We turn now to how the particular characteristics of a stimulus are coded by the various receptors and sensory pathways.

Was this article helpful?

0 0
Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


Responses

  • marcel kaestner
    What are some factors that impact our sensory perceptions?
    7 years ago

Post a comment