Electrical Resonance in Hair Cells

In many lower vertebrates frequency decomposition is performed, not by a wave on the basilar membrance, but by the hair cells themselves. Hair cells in the turtle cochlea and the bullfrog sacculus (to name but two examples) respond preferentially to stimuli of a certain frequency, and this band-pass response is mediated by the ionic channels in the hair cell membrane. At the top of each hair cell is the hair bundle, a group of stereocilia connected to each other at the tips by a thin fiber, called a tip link. Each stereocilium is rigid and, in response to a force applied at the tip, pivots around its base rather than bending. It is postulated that the tip links act like elastic springs connected directly to ionic channels such that when the hair bundle is deflected in one direction, the tip links pull channels open, while when the hair bundle is deflected in the opposite direction, the tip links relax and allow channels to close. The mechanically sensitive ion channels are nonselective, and the modulation of current flow through these channels results in hy-perpolarization or depolarization of the hair cell membrane. The membrane potential is then modulated by other ionic channels, including K+ channels, Ca2+-sensitive K+ channels, and voltage-sensitive Ca2+ channels. The structure, tuning, sensitivity, and function of hair cells are reviewed by Hudspeth (1985, 1989; Hudspeth and Gillespie, 1994), and these papers give a readable summary of recent work.

In response to a step current input, the membrane potential of hair cells exhibits damped oscillations, with a period and amplitude dependent on the size of the step. Thus, each cell has a natural frequency of oscillation and responds best to a stimulus at a similar frequency. Crawford and Fettiplace (1981) and Ashmore and Attwell (1985) have developed simple models for electrical resonance that while not based on the details of known mechanisms, provide a good description of the experimental results. Later work by Lewis and Hudspeth (1988a,b), using a more detailed model, showed that the measured properties of the ionic conductances are sufficient to explain resonance in the hair cells of the bullfrog sacculus.

Was this article helpful?

0 0

Post a comment